Metamath Proof Explorer


Theorem deg1ldgn

Description: An index at which a polynomial is zero, cannot be its degree. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1z.d D=deg1R
deg1z.p P=Poly1R
deg1z.z 0˙=0P
deg1nn0cl.b B=BaseP
deg1ldg.y Y=0R
deg1ldg.a A=coe1F
deg1ldgn.r φRRing
deg1ldgn.f φFB
deg1ldgn.x φX0
deg1ldgn.e φAX=Y
Assertion deg1ldgn φDFX

Proof

Step Hyp Ref Expression
1 deg1z.d D=deg1R
2 deg1z.p P=Poly1R
3 deg1z.z 0˙=0P
4 deg1nn0cl.b B=BaseP
5 deg1ldg.y Y=0R
6 deg1ldg.a A=coe1F
7 deg1ldgn.r φRRing
8 deg1ldgn.f φFB
9 deg1ldgn.x φX0
10 deg1ldgn.e φAX=Y
11 fveq2 DF=XADF=AX
12 11 adantl φDF=XADF=AX
13 7 adantr φDF=XRRing
14 8 adantr φDF=XFB
15 eleq1a X0DF=XDF0
16 9 15 syl φDF=XDF0
17 16 imp φDF=XDF0
18 1 2 3 4 deg1nn0clb RRingFBF0˙DF0
19 7 8 18 syl2anc φF0˙DF0
20 19 adantr φDF=XF0˙DF0
21 17 20 mpbird φDF=XF0˙
22 1 2 3 4 5 6 deg1ldg RRingFBF0˙ADFY
23 13 14 21 22 syl3anc φDF=XADFY
24 12 23 eqnetrrd φDF=XAXY
25 24 ex φDF=XAXY
26 25 necon2d φAX=YDFX
27 10 26 mpd φDFX