Metamath Proof Explorer


Theorem deg1scl

Description: A nonzero scalar polynomial has zero degree. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses deg1sclle.d D=deg1R
deg1sclle.p P=Poly1R
deg1sclle.k K=BaseR
deg1sclle.a A=algScP
deg1scl.z 0˙=0R
Assertion deg1scl RRingFKF0˙DAF=0

Proof

Step Hyp Ref Expression
1 deg1sclle.d D=deg1R
2 deg1sclle.p P=Poly1R
3 deg1sclle.k K=BaseR
4 deg1sclle.a A=algScP
5 deg1scl.z 0˙=0R
6 1 2 3 4 deg1sclle RRingFKDAF0
7 6 3adant3 RRingFKF0˙DAF0
8 simp1 RRingFKF0˙RRing
9 eqid BaseP=BaseP
10 2 4 3 9 ply1sclcl RRingFKAFBaseP
11 10 3adant3 RRingFKF0˙AFBaseP
12 eqid 0P=0P
13 2 4 5 12 3 ply1scln0 RRingFKF0˙AF0P
14 1 2 12 9 deg1nn0cl RRingAFBasePAF0PDAF0
15 8 11 13 14 syl3anc RRingFKF0˙DAF0
16 nn0le0eq0 DAF0DAF0DAF=0
17 15 16 syl RRingFKF0˙DAF0DAF=0
18 7 17 mpbid RRingFKF0˙DAF=0