Metamath Proof Explorer


Theorem dfac8alem

Description: Lemma for dfac8a . If the power set of a set has a choice function, then the set is numerable. (Contributed by NM, 10-Feb-1997) (Revised by Mario Carneiro, 5-Jan-2013)

Ref Expression
Hypotheses dfac8alem.2 F=recsG
dfac8alem.3 G=fVgAranf
Assertion dfac8alem ACgy𝒫AygyyAdomcard

Proof

Step Hyp Ref Expression
1 dfac8alem.2 F=recsG
2 dfac8alem.3 G=fVgAranf
3 elex ACAV
4 difss AFxA
5 elpw2g AVAFx𝒫AAFxA
6 4 5 mpbiri AVAFx𝒫A
7 neeq1 y=AFxyAFx
8 fveq2 y=AFxgy=gAFx
9 id y=AFxy=AFx
10 8 9 eleq12d y=AFxgyygAFxAFx
11 7 10 imbi12d y=AFxygyyAFxgAFxAFx
12 11 rspcv AFx𝒫Ay𝒫AygyyAFxgAFxAFx
13 6 12 syl AVy𝒫AygyyAFxgAFxAFx
14 13 3imp AVy𝒫AygyyAFxgAFxAFx
15 1 tfr2 xOnFx=GFx
16 1 tfr1 FFnOn
17 fnfun FFnOnFunF
18 16 17 ax-mp FunF
19 vex xV
20 resfunexg FunFxVFxV
21 18 19 20 mp2an FxV
22 rneq f=Fxranf=ranFx
23 df-ima Fx=ranFx
24 22 23 eqtr4di f=Fxranf=Fx
25 24 difeq2d f=FxAranf=AFx
26 25 fveq2d f=FxgAranf=gAFx
27 fvex gAFxV
28 26 2 27 fvmpt FxVGFx=gAFx
29 21 28 ax-mp GFx=gAFx
30 15 29 eqtrdi xOnFx=gAFx
31 30 eleq1d xOnFxAFxgAFxAFx
32 14 31 syl5ibrcom AVy𝒫AygyyAFxxOnFxAFx
33 32 3expia AVy𝒫AygyyAFxxOnFxAFx
34 33 com23 AVy𝒫AygyyxOnAFxFxAFx
35 34 ralrimiv AVy𝒫AygyyxOnAFxFxAFx
36 35 ex AVy𝒫AygyyxOnAFxFxAFx
37 16 tz7.49c AVxOnAFxFxAFxxOnFx:x1-1 ontoA
38 37 ex AVxOnAFxFxAFxxOnFx:x1-1 ontoA
39 19 f1oen Fx:x1-1 ontoAxA
40 isnumi xOnxAAdomcard
41 39 40 sylan2 xOnFx:x1-1 ontoAAdomcard
42 41 rexlimiva xOnFx:x1-1 ontoAAdomcard
43 38 42 syl6 AVxOnAFxFxAFxAdomcard
44 36 43 syld AVy𝒫AygyyAdomcard
45 3 44 syl ACy𝒫AygyyAdomcard
46 45 exlimdv ACgy𝒫AygyyAdomcard