Metamath Proof Explorer


Theorem dfac8alem

Description: Lemma for dfac8a . If the power set of a set has a choice function, then the set is numerable. (Contributed by NM, 10-Feb-1997) (Revised by Mario Carneiro, 5-Jan-2013)

Ref Expression
Hypotheses dfac8alem.2 F = recs G
dfac8alem.3 G = f V g A ran f
Assertion dfac8alem A C g y 𝒫 A y g y y A dom card

Proof

Step Hyp Ref Expression
1 dfac8alem.2 F = recs G
2 dfac8alem.3 G = f V g A ran f
3 elex A C A V
4 difss A F x A
5 elpw2g A V A F x 𝒫 A A F x A
6 4 5 mpbiri A V A F x 𝒫 A
7 neeq1 y = A F x y A F x
8 fveq2 y = A F x g y = g A F x
9 id y = A F x y = A F x
10 8 9 eleq12d y = A F x g y y g A F x A F x
11 7 10 imbi12d y = A F x y g y y A F x g A F x A F x
12 11 rspcv A F x 𝒫 A y 𝒫 A y g y y A F x g A F x A F x
13 6 12 syl A V y 𝒫 A y g y y A F x g A F x A F x
14 13 3imp A V y 𝒫 A y g y y A F x g A F x A F x
15 1 tfr2 x On F x = G F x
16 1 tfr1 F Fn On
17 fnfun F Fn On Fun F
18 16 17 ax-mp Fun F
19 vex x V
20 resfunexg Fun F x V F x V
21 18 19 20 mp2an F x V
22 rneq f = F x ran f = ran F x
23 df-ima F x = ran F x
24 22 23 eqtr4di f = F x ran f = F x
25 24 difeq2d f = F x A ran f = A F x
26 25 fveq2d f = F x g A ran f = g A F x
27 fvex g A F x V
28 26 2 27 fvmpt F x V G F x = g A F x
29 21 28 ax-mp G F x = g A F x
30 15 29 eqtrdi x On F x = g A F x
31 30 eleq1d x On F x A F x g A F x A F x
32 14 31 syl5ibrcom A V y 𝒫 A y g y y A F x x On F x A F x
33 32 3expia A V y 𝒫 A y g y y A F x x On F x A F x
34 33 com23 A V y 𝒫 A y g y y x On A F x F x A F x
35 34 ralrimiv A V y 𝒫 A y g y y x On A F x F x A F x
36 35 ex A V y 𝒫 A y g y y x On A F x F x A F x
37 16 tz7.49c A V x On A F x F x A F x x On F x : x 1-1 onto A
38 37 ex A V x On A F x F x A F x x On F x : x 1-1 onto A
39 19 f1oen F x : x 1-1 onto A x A
40 isnumi x On x A A dom card
41 39 40 sylan2 x On F x : x 1-1 onto A A dom card
42 41 rexlimiva x On F x : x 1-1 onto A A dom card
43 38 42 syl6 A V x On A F x F x A F x A dom card
44 36 43 syld A V y 𝒫 A y g y y A dom card
45 3 44 syl A C y 𝒫 A y g y y A dom card
46 45 exlimdv A C g y 𝒫 A y g y y A dom card