Metamath Proof Explorer


Theorem dfco2

Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008)

Ref Expression
Assertion dfco2 AB=xVB-1x×Ax

Proof

Step Hyp Ref Expression
1 relco RelAB
2 reliun RelxVB-1x×AxxVRelB-1x×Ax
3 relxp RelB-1x×Ax
4 3 a1i xVRelB-1x×Ax
5 2 4 mprgbir RelxVB-1x×Ax
6 opelco2g yVzVyzABxyxBxzA
7 6 el2v yzABxyxBxzA
8 eliun yzxVB-1x×AxxVyzB-1x×Ax
9 rexv xVyzB-1x×AxxyzB-1x×Ax
10 opelxp yzB-1x×AxyB-1xzAx
11 vex xV
12 vex yV
13 11 12 elimasn yB-1xxyB-1
14 11 12 opelcnv xyB-1yxB
15 13 14 bitri yB-1xyxB
16 vex zV
17 11 16 elimasn zAxxzA
18 15 17 anbi12i yB-1xzAxyxBxzA
19 10 18 bitri yzB-1x×AxyxBxzA
20 19 exbii xyzB-1x×AxxyxBxzA
21 8 9 20 3bitrri xyxBxzAyzxVB-1x×Ax
22 7 21 bitri yzAByzxVB-1x×Ax
23 1 5 22 eqrelriiv AB=xVB-1x×Ax