Metamath Proof Explorer


Theorem dfconngr1

Description: Alternative definition of the class of all connected graphs, requiring paths between distinct vertices. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 15-Feb-2021)

Ref Expression
Assertion dfconngr1 ConnGraph=g|[˙Vtxg/v]˙kvnvkfpfkPathsOngnp

Proof

Step Hyp Ref Expression
1 df-conngr ConnGraph=g|[˙Vtxg/v]˙kvnvfpfkPathsOngnp
2 eqid Vtxg=Vtxg
3 2 0pthonv kVtxgfpfkPathsOngkp
4 oveq2 n=kkPathsOngn=kPathsOngk
5 4 breqd n=kfkPathsOngnpfkPathsOngkp
6 5 2exbidv n=kfpfkPathsOngnpfpfkPathsOngkp
7 6 ralsng kVtxgnkfpfkPathsOngnpfpfkPathsOngkp
8 3 7 mpbird kVtxgnkfpfkPathsOngnp
9 difsnid kVtxgVtxgkk=Vtxg
10 9 eqcomd kVtxgVtxg=Vtxgkk
11 10 raleqdv kVtxgnVtxgfpfkPathsOngnpnVtxgkkfpfkPathsOngnp
12 ralunb nVtxgkkfpfkPathsOngnpnVtxgkfpfkPathsOngnpnkfpfkPathsOngnp
13 11 12 bitrdi kVtxgnVtxgfpfkPathsOngnpnVtxgkfpfkPathsOngnpnkfpfkPathsOngnp
14 8 13 mpbiran2d kVtxgnVtxgfpfkPathsOngnpnVtxgkfpfkPathsOngnp
15 14 ralbiia kVtxgnVtxgfpfkPathsOngnpkVtxgnVtxgkfpfkPathsOngnp
16 fvex VtxgV
17 raleq v=VtxgnvfpfkPathsOngnpnVtxgfpfkPathsOngnp
18 17 raleqbi1dv v=VtxgkvnvfpfkPathsOngnpkVtxgnVtxgfpfkPathsOngnp
19 difeq1 v=Vtxgvk=Vtxgk
20 19 raleqdv v=VtxgnvkfpfkPathsOngnpnVtxgkfpfkPathsOngnp
21 20 raleqbi1dv v=VtxgkvnvkfpfkPathsOngnpkVtxgnVtxgkfpfkPathsOngnp
22 18 21 bibi12d v=VtxgkvnvfpfkPathsOngnpkvnvkfpfkPathsOngnpkVtxgnVtxgfpfkPathsOngnpkVtxgnVtxgkfpfkPathsOngnp
23 16 22 sbcie [˙Vtxg/v]˙kvnvfpfkPathsOngnpkvnvkfpfkPathsOngnpkVtxgnVtxgfpfkPathsOngnpkVtxgnVtxgkfpfkPathsOngnp
24 15 23 mpbir [˙Vtxg/v]˙kvnvfpfkPathsOngnpkvnvkfpfkPathsOngnp
25 sbcbi1 [˙Vtxg/v]˙kvnvfpfkPathsOngnpkvnvkfpfkPathsOngnp[˙Vtxg/v]˙kvnvfpfkPathsOngnp[˙Vtxg/v]˙kvnvkfpfkPathsOngnp
26 24 25 ax-mp [˙Vtxg/v]˙kvnvfpfkPathsOngnp[˙Vtxg/v]˙kvnvkfpfkPathsOngnp
27 26 abbii g|[˙Vtxg/v]˙kvnvfpfkPathsOngnp=g|[˙Vtxg/v]˙kvnvkfpfkPathsOngnp
28 1 27 eqtri ConnGraph=g|[˙Vtxg/v]˙kvnvkfpfkPathsOngnp