Metamath Proof Explorer


Theorem dfitg

Description: Evaluate the class substitution in df-itg . (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypothesis dfitg.1 T=Bik
Assertion dfitg ABdx=k=03ik2xifxA0TT0

Proof

Step Hyp Ref Expression
1 dfitg.1 T=Bik
2 df-itg ABdx=k=03ik2xBik/yifxA0yy0
3 fvex BikV
4 id y=Biky=Bik
5 4 1 eqtr4di y=Biky=T
6 5 breq2d y=Bik0y0T
7 6 anbi2d y=BikxA0yxA0T
8 7 5 ifbieq1d y=BikifxA0yy0=ifxA0TT0
9 3 8 csbie Bik/yifxA0yy0=ifxA0TT0
10 9 mpteq2i xBik/yifxA0yy0=xifxA0TT0
11 10 fveq2i 2xBik/yifxA0yy0=2xifxA0TT0
12 11 oveq2i ik2xBik/yifxA0yy0=ik2xifxA0TT0
13 12 a1i k03ik2xBik/yifxA0yy0=ik2xifxA0TT0
14 13 sumeq2i k=03ik2xBik/yifxA0yy0=k=03ik2xifxA0TT0
15 2 14 eqtri ABdx=k=03ik2xifxA0TT0