Metamath Proof Explorer


Theorem dfrecs3OLD

Description: Obsolete proof of dfrecs3 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 3-Aug-2020)

Ref Expression
Assertion dfrecs3OLD recsF=f|xOnfFnxyxfy=Ffy

Proof

Step Hyp Ref Expression
1 df-recs recsF=wrecsEOnF
2 dfwrecsOLD wrecsEOnF=f|xfFnxxOnyxPredEOnyxyxfy=FfPredEOny
3 3anass fFnxxOnyxPredEOnyxyxfy=FfPredEOnyfFnxxOnyxPredEOnyxyxfy=FfPredEOny
4 vex xV
5 4 elon xOnOrdx
6 ordsson OrdxxOn
7 ordtr OrdxTrx
8 6 7 jca OrdxxOnTrx
9 epweon EWeOn
10 wess xOnEWeOnEWex
11 9 10 mpi xOnEWex
12 11 anim1ci xOnTrxTrxEWex
13 df-ord OrdxTrxEWex
14 12 13 sylibr xOnTrxOrdx
15 8 14 impbii OrdxxOnTrx
16 dftr3 Trxyxyx
17 ssel2 xOnyxyOn
18 predon yOnPredEOny=y
19 18 sseq1d yOnPredEOnyxyx
20 17 19 syl xOnyxPredEOnyxyx
21 20 ralbidva xOnyxPredEOnyxyxyx
22 16 21 bitr4id xOnTrxyxPredEOnyx
23 22 pm5.32i xOnTrxxOnyxPredEOnyx
24 5 15 23 3bitri xOnxOnyxPredEOnyx
25 24 anbi1i xOnyxfy=FfPredEOnyxOnyxPredEOnyxyxfy=FfPredEOny
26 onelon xOnyxyOn
27 18 reseq2d yOnfPredEOny=fy
28 27 fveq2d yOnFfPredEOny=Ffy
29 28 eqeq2d yOnfy=FfPredEOnyfy=Ffy
30 26 29 syl xOnyxfy=FfPredEOnyfy=Ffy
31 30 ralbidva xOnyxfy=FfPredEOnyyxfy=Ffy
32 31 pm5.32i xOnyxfy=FfPredEOnyxOnyxfy=Ffy
33 25 32 bitr3i xOnyxPredEOnyxyxfy=FfPredEOnyxOnyxfy=Ffy
34 33 anbi2i fFnxxOnyxPredEOnyxyxfy=FfPredEOnyfFnxxOnyxfy=Ffy
35 an12 fFnxxOnyxfy=FfyxOnfFnxyxfy=Ffy
36 3 34 35 3bitri fFnxxOnyxPredEOnyxyxfy=FfPredEOnyxOnfFnxyxfy=Ffy
37 36 exbii xfFnxxOnyxPredEOnyxyxfy=FfPredEOnyxxOnfFnxyxfy=Ffy
38 df-rex xOnfFnxyxfy=FfyxxOnfFnxyxfy=Ffy
39 37 38 bitr4i xfFnxxOnyxPredEOnyxyxfy=FfPredEOnyxOnfFnxyxfy=Ffy
40 39 abbii f|xfFnxxOnyxPredEOnyxyxfy=FfPredEOny=f|xOnfFnxyxfy=Ffy
41 40 unieqi f|xfFnxxOnyxPredEOnyxyxfy=FfPredEOny=f|xOnfFnxyxfy=Ffy
42 1 2 41 3eqtri recsF=f|xOnfFnxyxfy=Ffy