Metamath Proof Explorer


Theorem dftermo2

Description: A terminal object is an initial object in the opposite category. An alternate definition of df-termo depending on df-inito . (Contributed by Zhi Wang, 29-Aug-2024)

Ref Expression
Assertion dftermo2 TermO=cCatInitOoppCatc

Proof

Step Hyp Ref Expression
1 df-termo TermO=cCataBasec|bBasec∃!hhbHomca
2 eqid oppCatc=oppCatc
3 2 oppccat cCatoppCatcCat
4 eqid Basec=Basec
5 2 4 oppcbas Basec=BaseoppCatc
6 eqid HomoppCatc=HomoppCatc
7 3 5 6 initoval cCatInitOoppCatc=aBasec|bBasec∃!hhaHomoppCatcb
8 eqid Homc=Homc
9 8 2 oppchom aHomoppCatcb=bHomca
10 9 eleq2i haHomoppCatcbhbHomca
11 10 eubii ∃!hhaHomoppCatcb∃!hhbHomca
12 11 ralbii bBasec∃!hhaHomoppCatcbbBasec∃!hhbHomca
13 12 rabbii aBasec|bBasec∃!hhaHomoppCatcb=aBasec|bBasec∃!hhbHomca
14 7 13 eqtrdi cCatInitOoppCatc=aBasec|bBasec∃!hhbHomca
15 14 mpteq2ia cCatInitOoppCatc=cCataBasec|bBasec∃!hhbHomca
16 1 15 eqtr4i TermO=cCatInitOoppCatc