Metamath Proof Explorer


Theorem dftpos3

Description: Alternate definition of tpos when F has relational domain. Compare df-cnv . (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion dftpos3 ReldomFtposF=xyz|yxFz

Proof

Step Hyp Ref Expression
1 relcnv ReldomF-1
2 dmtpos ReldomFdomtposF=domF-1
3 2 releqd ReldomFReldomtposFReldomF-1
4 1 3 mpbiri ReldomFReldomtposF
5 reltpos ReltposF
6 4 5 jctil ReldomFReltposFReldomtposF
7 relrelss ReltposFReldomtposFtposFV×V×V
8 6 7 sylib ReldomFtposFV×V×V
9 8 sseld ReldomFwtposFwV×V×V
10 elvvv wV×V×Vxyzw=xyz
11 9 10 imbitrdi ReldomFwtposFxyzw=xyz
12 11 pm4.71rd ReldomFwtposFxyzw=xyzwtposF
13 19.41vvv xyzw=xyzwtposFxyzw=xyzwtposF
14 eleq1 w=xyzwtposFxyztposF
15 df-br xytposFzxyztposF
16 brtpos zVxytposFzyxFz
17 16 elv xytposFzyxFz
18 15 17 bitr3i xyztposFyxFz
19 14 18 bitrdi w=xyzwtposFyxFz
20 19 pm5.32i w=xyzwtposFw=xyzyxFz
21 20 3exbii xyzw=xyzwtposFxyzw=xyzyxFz
22 13 21 bitr3i xyzw=xyzwtposFxyzw=xyzyxFz
23 12 22 bitrdi ReldomFwtposFxyzw=xyzyxFz
24 23 eqabdv ReldomFtposF=w|xyzw=xyzyxFz
25 df-oprab xyz|yxFz=w|xyzw=xyzyxFz
26 24 25 eqtr4di ReldomFtposF=xyz|yxFz