Metamath Proof Explorer


Theorem diaelval

Description: Member of the partial isomorphism A for a lattice K . (Contributed by NM, 3-Dec-2013)

Ref Expression
Hypotheses diaval.b B=BaseK
diaval.l ˙=K
diaval.h H=LHypK
diaval.t T=LTrnKW
diaval.r R=trLKW
diaval.i I=DIsoAKW
Assertion diaelval KVWHXBX˙WFIXFTRF˙X

Proof

Step Hyp Ref Expression
1 diaval.b B=BaseK
2 diaval.l ˙=K
3 diaval.h H=LHypK
4 diaval.t T=LTrnKW
5 diaval.r R=trLKW
6 diaval.i I=DIsoAKW
7 1 2 3 4 5 6 diaval KVWHXBX˙WIX=fT|Rf˙X
8 7 eleq2d KVWHXBX˙WFIXFfT|Rf˙X
9 fveq2 f=FRf=RF
10 9 breq1d f=FRf˙XRF˙X
11 10 elrab FfT|Rf˙XFTRF˙X
12 8 11 bitrdi KVWHXBX˙WFIXFTRF˙X