Metamath Proof Explorer


Theorem diag2cl

Description: The diagonal functor at a morphism is a natural transformation between constant functors. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses diag2.l L=CΔfuncD
diag2.a A=BaseC
diag2.b B=BaseD
diag2.h H=HomC
diag2.c φCCat
diag2.d φDCat
diag2.x φXA
diag2.y φYA
diag2.f φFXHY
diag2cl.h N=DNatC
Assertion diag2cl φB×F1stLXN1stLY

Proof

Step Hyp Ref Expression
1 diag2.l L=CΔfuncD
2 diag2.a A=BaseC
3 diag2.b B=BaseD
4 diag2.h H=HomC
5 diag2.c φCCat
6 diag2.d φDCat
7 diag2.x φXA
8 diag2.y φYA
9 diag2.f φFXHY
10 diag2cl.h N=DNatC
11 1 2 3 4 5 6 7 8 9 diag2 φX2ndLYF=B×F
12 eqid DFuncCatC=DFuncCatC
13 12 10 fuchom N=HomDFuncCatC
14 relfunc RelCFuncDFuncCatC
15 1 5 6 12 diagcl φLCFuncDFuncCatC
16 1st2ndbr RelCFuncDFuncCatCLCFuncDFuncCatC1stLCFuncDFuncCatC2ndL
17 14 15 16 sylancr φ1stLCFuncDFuncCatC2ndL
18 2 4 13 17 7 8 funcf2 φX2ndLY:XHY1stLXN1stLY
19 18 9 ffvelcdmd φX2ndLYF1stLXN1stLY
20 11 19 eqeltrrd φB×F1stLXN1stLY