Metamath Proof Explorer


Theorem diag2cl

Description: The diagonal functor at a morphism is a natural transformation between constant functors. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses diag2.l L = C Δ func D
diag2.a A = Base C
diag2.b B = Base D
diag2.h H = Hom C
diag2.c φ C Cat
diag2.d φ D Cat
diag2.x φ X A
diag2.y φ Y A
diag2.f φ F X H Y
diag2cl.h N = D Nat C
Assertion diag2cl φ B × F 1 st L X N 1 st L Y

Proof

Step Hyp Ref Expression
1 diag2.l L = C Δ func D
2 diag2.a A = Base C
3 diag2.b B = Base D
4 diag2.h H = Hom C
5 diag2.c φ C Cat
6 diag2.d φ D Cat
7 diag2.x φ X A
8 diag2.y φ Y A
9 diag2.f φ F X H Y
10 diag2cl.h N = D Nat C
11 1 2 3 4 5 6 7 8 9 diag2 φ X 2 nd L Y F = B × F
12 eqid D FuncCat C = D FuncCat C
13 12 10 fuchom N = Hom D FuncCat C
14 relfunc Rel C Func D FuncCat C
15 1 5 6 12 diagcl φ L C Func D FuncCat C
16 1st2ndbr Rel C Func D FuncCat C L C Func D FuncCat C 1 st L C Func D FuncCat C 2 nd L
17 14 15 16 sylancr φ 1 st L C Func D FuncCat C 2 nd L
18 2 4 13 17 7 8 funcf2 φ X 2 nd L Y : X H Y 1 st L X N 1 st L Y
19 18 9 ffvelrnd φ X 2 nd L Y F 1 st L X N 1 st L Y
20 11 19 eqeltrrd φ B × F 1 st L X N 1 st L Y