Metamath Proof Explorer


Theorem diainN

Description: Inverse partial isomorphism A of an intersection. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diam.m ˙=meetK
diam.h H=LHypK
diam.i I=DIsoAKW
Assertion diainN KHLWHXranIYranIXY=II-1X˙I-1Y

Proof

Step Hyp Ref Expression
1 diam.m ˙=meetK
2 diam.h H=LHypK
3 diam.i I=DIsoAKW
4 simpl KHLWHXranIYranIKHLWH
5 2 3 diacnvclN KHLWHXranII-1XdomI
6 5 adantrr KHLWHXranIYranII-1XdomI
7 2 3 diacnvclN KHLWHYranII-1YdomI
8 7 adantrl KHLWHXranIYranII-1YdomI
9 1 2 3 diameetN KHLWHI-1XdomII-1YdomIII-1X˙I-1Y=II-1XII-1Y
10 4 6 8 9 syl12anc KHLWHXranIYranIII-1X˙I-1Y=II-1XII-1Y
11 2 3 diaf11N KHLWHI:domI1-1 ontoranI
12 11 adantr KHLWHXranIYranII:domI1-1 ontoranI
13 simprl KHLWHXranIYranIXranI
14 f1ocnvfv2 I:domI1-1 ontoranIXranIII-1X=X
15 12 13 14 syl2anc KHLWHXranIYranIII-1X=X
16 simprr KHLWHXranIYranIYranI
17 f1ocnvfv2 I:domI1-1 ontoranIYranIII-1Y=Y
18 12 16 17 syl2anc KHLWHXranIYranIII-1Y=Y
19 15 18 ineq12d KHLWHXranIYranIII-1XII-1Y=XY
20 10 19 eqtr2d KHLWHXranIYranIXY=II-1X˙I-1Y