Metamath Proof Explorer


Theorem dian0

Description: The value of the partial isomorphism A is not empty. (Contributed by NM, 17-Jan-2014)

Ref Expression
Hypotheses dian0.b B=BaseK
dian0.l ˙=K
dian0.h H=LHypK
dian0.i I=DIsoAKW
Assertion dian0 KHLWHXBX˙WIX

Proof

Step Hyp Ref Expression
1 dian0.b B=BaseK
2 dian0.l ˙=K
3 dian0.h H=LHypK
4 dian0.i I=DIsoAKW
5 eqid LTrnKW=LTrnKW
6 1 3 5 idltrn KHLWHIBLTrnKW
7 6 adantr KHLWHXBX˙WIBLTrnKW
8 eqid 0.K=0.K
9 eqid trLKW=trLKW
10 1 8 3 9 trlid0 KHLWHtrLKWIB=0.K
11 10 adantr KHLWHXBX˙WtrLKWIB=0.K
12 hlatl KHLKAtLat
13 12 adantr KHLWHKAtLat
14 simpl XBX˙WXB
15 1 2 8 atl0le KAtLatXB0.K˙X
16 13 14 15 syl2an KHLWHXBX˙W0.K˙X
17 11 16 eqbrtrd KHLWHXBX˙WtrLKWIB˙X
18 1 2 3 5 9 4 diaelval KHLWHXBX˙WIBIXIBLTrnKWtrLKWIB˙X
19 7 17 18 mpbir2and KHLWHXBX˙WIBIX
20 19 ne0d KHLWHXBX˙WIX