Metamath Proof Explorer


Theorem dibelval1st2N

Description: Membership in value of the partial isomorphism B for a lattice K . (Contributed by NM, 13-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibelval1st2.b B=BaseK
dibelval1st2.l ˙=K
dibelval1st2.h H=LHypK
dibelval1st2.t T=LTrnKW
dibelval1st2.r R=trLKW
dibelval1st2.i I=DIsoBKW
Assertion dibelval1st2N KVWHXBX˙WYIXR1stY˙X

Proof

Step Hyp Ref Expression
1 dibelval1st2.b B=BaseK
2 dibelval1st2.l ˙=K
3 dibelval1st2.h H=LHypK
4 dibelval1st2.t T=LTrnKW
5 dibelval1st2.r R=trLKW
6 dibelval1st2.i I=DIsoBKW
7 eqid DIsoAKW=DIsoAKW
8 1 2 3 7 6 dibelval1st KVWHXBX˙WYIX1stYDIsoAKWX
9 1 2 3 4 5 7 diatrl KVWHXBX˙W1stYDIsoAKWXR1stY˙X
10 8 9 syld3an3 KVWHXBX˙WYIXR1stY˙X