Metamath Proof Explorer


Theorem dibf11N

Description: The partial isomorphism A for a lattice K is a one-to-one function. Part of Lemma M of Crawley p. 120 line 27. (Contributed by NM, 4-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dibcl.h H=LHypK
dibcl.i I=DIsoBKW
Assertion dibf11N KHLWHI:domI1-1 ontoranI

Proof

Step Hyp Ref Expression
1 dibcl.h H=LHypK
2 dibcl.i I=DIsoBKW
3 eqid BaseK=BaseK
4 eqid K=K
5 3 4 1 2 dibfnN KHLWHIFnxBaseK|xKW
6 fnfun IFnxBaseK|xKWFunI
7 funfn FunIIFndomI
8 6 7 sylib IFnxBaseK|xKWIFndomI
9 5 8 syl KHLWHIFndomI
10 eqidd KHLWHranI=ranI
11 3 4 1 2 dibeldmN KHLWHxdomIxBaseKxKW
12 3 4 1 2 dibeldmN KHLWHydomIyBaseKyKW
13 11 12 anbi12d KHLWHxdomIydomIxBaseKxKWyBaseKyKW
14 3 4 1 2 dib11N KHLWHxBaseKxKWyBaseKyKWIx=Iyx=y
15 14 biimpd KHLWHxBaseKxKWyBaseKyKWIx=Iyx=y
16 15 3expib KHLWHxBaseKxKWyBaseKyKWIx=Iyx=y
17 13 16 sylbid KHLWHxdomIydomIIx=Iyx=y
18 17 ralrimivv KHLWHxdomIydomIIx=Iyx=y
19 dff1o6 I:domI1-1 ontoranIIFndomIranI=ranIxdomIydomIIx=Iyx=y
20 9 10 18 19 syl3anbrc KHLWHI:domI1-1 ontoranI