Metamath Proof Explorer


Theorem dibopelval3

Description: Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dibval3.b B=BaseK
dibval3.l ˙=K
dibval3.h H=LHypK
dibval3.t T=LTrnKW
dibval3.r R=trLKW
dibval3.o 0˙=gTIB
dibval3.i I=DIsoBKW
Assertion dibopelval3 KVWHXBX˙WFSIXFTRF˙XS=0˙

Proof

Step Hyp Ref Expression
1 dibval3.b B=BaseK
2 dibval3.l ˙=K
3 dibval3.h H=LHypK
4 dibval3.t T=LTrnKW
5 dibval3.r R=trLKW
6 dibval3.o 0˙=gTIB
7 dibval3.i I=DIsoBKW
8 eqid DIsoAKW=DIsoAKW
9 1 2 3 4 6 8 7 dibopelval2 KVWHXBX˙WFSIXFDIsoAKWXS=0˙
10 1 2 3 4 5 8 diaelval KVWHXBX˙WFDIsoAKWXFTRF˙X
11 10 anbi1d KVWHXBX˙WFDIsoAKWXS=0˙FTRF˙XS=0˙
12 9 11 bitrd KVWHXBX˙WFSIXFTRF˙XS=0˙