Metamath Proof Explorer


Theorem dibord

Description: The isomorphism B for a lattice K is order-preserving in the region under co-atom W . (Contributed by NM, 24-Feb-2014)

Ref Expression
Hypotheses dib11.b B=BaseK
dib11.l ˙=K
dib11.h H=LHypK
dib11.i I=DIsoBKW
Assertion dibord KHLWHXBX˙WYBY˙WIXIYX˙Y

Proof

Step Hyp Ref Expression
1 dib11.b B=BaseK
2 dib11.l ˙=K
3 dib11.h H=LHypK
4 dib11.i I=DIsoBKW
5 eqid LTrnKW=LTrnKW
6 eqid fLTrnKWIB=fLTrnKWIB
7 eqid DIsoAKW=DIsoAKW
8 1 2 3 5 6 7 4 dibval2 KHLWHXBX˙WIX=DIsoAKWX×fLTrnKWIB
9 8 3adant3 KHLWHXBX˙WYBY˙WIX=DIsoAKWX×fLTrnKWIB
10 1 2 3 5 6 7 4 dibval2 KHLWHYBY˙WIY=DIsoAKWY×fLTrnKWIB
11 10 3adant2 KHLWHXBX˙WYBY˙WIY=DIsoAKWY×fLTrnKWIB
12 9 11 sseq12d KHLWHXBX˙WYBY˙WIXIYDIsoAKWX×fLTrnKWIBDIsoAKWY×fLTrnKWIB
13 1 2 3 4 dibn0 KHLWHXBX˙WIX
14 13 3adant3 KHLWHXBX˙WYBY˙WIX
15 9 14 eqnetrrd KHLWHXBX˙WYBY˙WDIsoAKWX×fLTrnKWIB
16 ssxpb DIsoAKWX×fLTrnKWIBDIsoAKWX×fLTrnKWIBDIsoAKWY×fLTrnKWIBDIsoAKWXDIsoAKWYfLTrnKWIBfLTrnKWIB
17 15 16 syl KHLWHXBX˙WYBY˙WDIsoAKWX×fLTrnKWIBDIsoAKWY×fLTrnKWIBDIsoAKWXDIsoAKWYfLTrnKWIBfLTrnKWIB
18 ssid fLTrnKWIBfLTrnKWIB
19 18 biantru DIsoAKWXDIsoAKWYDIsoAKWXDIsoAKWYfLTrnKWIBfLTrnKWIB
20 1 2 3 7 diaord KHLWHXBX˙WYBY˙WDIsoAKWXDIsoAKWYX˙Y
21 19 20 bitr3id KHLWHXBX˙WYBY˙WDIsoAKWXDIsoAKWYfLTrnKWIBfLTrnKWIBX˙Y
22 12 17 21 3bitrd KHLWHXBX˙WYBY˙WIXIYX˙Y