Metamath Proof Explorer


Theorem dibval

Description: The partial isomorphism B for a lattice K . (Contributed by NM, 8-Dec-2013)

Ref Expression
Hypotheses dibval.b B = Base K
dibval.h H = LHyp K
dibval.t T = LTrn K W
dibval.o 0 ˙ = f T I B
dibval.j J = DIsoA K W
dibval.i I = DIsoB K W
Assertion dibval K V W H X dom J I X = J X × 0 ˙

Proof

Step Hyp Ref Expression
1 dibval.b B = Base K
2 dibval.h H = LHyp K
3 dibval.t T = LTrn K W
4 dibval.o 0 ˙ = f T I B
5 dibval.j J = DIsoA K W
6 dibval.i I = DIsoB K W
7 1 2 3 4 5 6 dibfval K V W H I = x dom J J x × 0 ˙
8 7 adantr K V W H X dom J I = x dom J J x × 0 ˙
9 8 fveq1d K V W H X dom J I X = x dom J J x × 0 ˙ X
10 fveq2 x = X J x = J X
11 10 xpeq1d x = X J x × 0 ˙ = J X × 0 ˙
12 eqid x dom J J x × 0 ˙ = x dom J J x × 0 ˙
13 fvex J X V
14 snex 0 ˙ V
15 13 14 xpex J X × 0 ˙ V
16 11 12 15 fvmpt X dom J x dom J J x × 0 ˙ X = J X × 0 ˙
17 16 adantl K V W H X dom J x dom J J x × 0 ˙ X = J X × 0 ˙
18 9 17 eqtrd K V W H X dom J I X = J X × 0 ˙