Metamath Proof Explorer


Theorem dibval

Description: The partial isomorphism B for a lattice K . (Contributed by NM, 8-Dec-2013)

Ref Expression
Hypotheses dibval.b B=BaseK
dibval.h H=LHypK
dibval.t T=LTrnKW
dibval.o 0˙=fTIB
dibval.j J=DIsoAKW
dibval.i I=DIsoBKW
Assertion dibval KVWHXdomJIX=JX×0˙

Proof

Step Hyp Ref Expression
1 dibval.b B=BaseK
2 dibval.h H=LHypK
3 dibval.t T=LTrnKW
4 dibval.o 0˙=fTIB
5 dibval.j J=DIsoAKW
6 dibval.i I=DIsoBKW
7 1 2 3 4 5 6 dibfval KVWHI=xdomJJx×0˙
8 7 adantr KVWHXdomJI=xdomJJx×0˙
9 8 fveq1d KVWHXdomJIX=xdomJJx×0˙X
10 fveq2 x=XJx=JX
11 10 xpeq1d x=XJx×0˙=JX×0˙
12 eqid xdomJJx×0˙=xdomJJx×0˙
13 fvex JXV
14 snex 0˙V
15 13 14 xpex JX×0˙V
16 11 12 15 fvmpt XdomJxdomJJx×0˙X=JX×0˙
17 16 adantl KVWHXdomJxdomJJx×0˙X=JX×0˙
18 9 17 eqtrd KVWHXdomJIX=JX×0˙