Metamath Proof Explorer


Theorem dicelval1sta

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 16-Feb-2014)

Ref Expression
Hypotheses dicelval1sta.l ˙=K
dicelval1sta.a A=AtomsK
dicelval1sta.h H=LHypK
dicelval1sta.p P=ocKW
dicelval1sta.t T=LTrnKW
dicelval1sta.i I=DIsoCKW
Assertion dicelval1sta KVWHQA¬Q˙WYIQ1stY=2ndYιgT|gP=Q

Proof

Step Hyp Ref Expression
1 dicelval1sta.l ˙=K
2 dicelval1sta.a A=AtomsK
3 dicelval1sta.h H=LHypK
4 dicelval1sta.p P=ocKW
5 dicelval1sta.t T=LTrnKW
6 dicelval1sta.i I=DIsoCKW
7 eqid TEndoKW=TEndoKW
8 1 2 3 4 5 7 6 dicval KVWHQA¬Q˙WIQ=fs|f=sιgT|gP=QsTEndoKW
9 8 eleq2d KVWHQA¬Q˙WYIQYfs|f=sιgT|gP=QsTEndoKW
10 9 biimp3a KVWHQA¬Q˙WYIQYfs|f=sιgT|gP=QsTEndoKW
11 eqeq1 f=1stYf=sιgT|gP=Q1stY=sιgT|gP=Q
12 11 anbi1d f=1stYf=sιgT|gP=QsTEndoKW1stY=sιgT|gP=QsTEndoKW
13 fveq1 s=2ndYsιgT|gP=Q=2ndYιgT|gP=Q
14 13 eqeq2d s=2ndY1stY=sιgT|gP=Q1stY=2ndYιgT|gP=Q
15 eleq1 s=2ndYsTEndoKW2ndYTEndoKW
16 14 15 anbi12d s=2ndY1stY=sιgT|gP=QsTEndoKW1stY=2ndYιgT|gP=Q2ndYTEndoKW
17 12 16 elopabi Yfs|f=sιgT|gP=QsTEndoKW1stY=2ndYιgT|gP=Q2ndYTEndoKW
18 10 17 syl KVWHQA¬Q˙WYIQ1stY=2ndYιgT|gP=Q2ndYTEndoKW
19 18 simpld KVWHQA¬Q˙WYIQ1stY=2ndYιgT|gP=Q