Metamath Proof Explorer


Theorem dig2bits

Description: The K th digit of a nonnegative integer N in a binary system is its K th bit. (Contributed by AV, 24-May-2020)

Ref Expression
Assertion dig2bits N0K0Kdigit2N=1KbitsN

Proof

Step Hyp Ref Expression
1 nn0re N0N
2 1 adantr N0K0N
3 2re 2
4 3 a1i N02
5 reexpcl 2K02K
6 4 5 sylan N0K02K
7 2cnd N0K02
8 2ne0 20
9 8 a1i N0K020
10 nn0z K0K
11 10 adantl N0K0K
12 7 9 11 expne0d N0K02K0
13 2 6 12 redivcld N0K0N2K
14 13 flcld N0K0N2K
15 mod2eq1n2dvds N2KN2Kmod2=1¬2N2K
16 14 15 syl N0K0N2Kmod2=1¬2N2K
17 2nn 2
18 17 a1i N0K02
19 simpr N0K0K0
20 nn0rp0 N0N0+∞
21 20 adantr N0K0N0+∞
22 nn0digval 2K0N0+∞Kdigit2N=N2Kmod2
23 18 19 21 22 syl3anc N0K0Kdigit2N=N2Kmod2
24 23 eqeq1d N0K0Kdigit2N=1N2Kmod2=1
25 nn0z N0N
26 bitsval2 NK0KbitsN¬2N2K
27 25 26 sylan N0K0KbitsN¬2N2K
28 16 24 27 3bitr4d N0K0Kdigit2N=1KbitsN