Metamath Proof Explorer


Theorem digvalnn0

Description: The K th digit of a nonnegative real number R in the positional system with base B is a nonnegative integer. (Contributed by AV, 28-May-2020)

Ref Expression
Assertion digvalnn0 BKR0+∞KdigitBR0

Proof

Step Hyp Ref Expression
1 digval BKR0+∞KdigitBR=BKRmodB
2 nnre BB
3 2 3ad2ant1 BKR0+∞B
4 nnne0 BB0
5 4 3ad2ant1 BKR0+∞B0
6 znegcl KK
7 6 3ad2ant2 BKR0+∞K
8 3 5 7 reexpclzd BKR0+∞BK
9 elrege0 R0+∞R0R
10 9 simplbi R0+∞R
11 10 3ad2ant3 BKR0+∞R
12 8 11 remulcld BKR0+∞BKR
13 12 flcld BKR0+∞BKR
14 simp1 BKR0+∞B
15 13 14 zmodcld BKR0+∞BKRmodB0
16 1 15 eqeltrd BKR0+∞KdigitBR0