Metamath Proof Explorer


Theorem dihcl

Description: Closure of isomorphism H. (Contributed by NM, 8-Mar-2014)

Ref Expression
Hypotheses dihfn.b B=BaseK
dihfn.h H=LHypK
dihfn.i I=DIsoHKW
Assertion dihcl KHLWHXBIXranI

Proof

Step Hyp Ref Expression
1 dihfn.b B=BaseK
2 dihfn.h H=LHypK
3 dihfn.i I=DIsoHKW
4 eqid DVecHKW=DVecHKW
5 eqid LSubSpDVecHKW=LSubSpDVecHKW
6 1 2 3 4 5 dihf11 KHLWHI:B1-1LSubSpDVecHKW
7 6 adantr KHLWHXBI:B1-1LSubSpDVecHKW
8 f1fn I:B1-1LSubSpDVecHKWIFnB
9 7 8 syl KHLWHXBIFnB
10 fnfvelrn IFnBXBIXranI
11 9 10 sylancom KHLWHXBIXranI