Metamath Proof Explorer


Theorem dihf11

Description: The isomorphism H for a lattice K is a one-to-one function. Part of proof after Lemma N of Crawley p. 122 line 6. (Contributed by NM, 7-Mar-2014)

Ref Expression
Hypotheses dihf11.b B=BaseK
dihf11.h H=LHypK
dihf11.i I=DIsoHKW
dihf11.u U=DVecHKW
dihf11.s S=LSubSpU
Assertion dihf11 KHLWHI:B1-1S

Proof

Step Hyp Ref Expression
1 dihf11.b B=BaseK
2 dihf11.h H=LHypK
3 dihf11.i I=DIsoHKW
4 dihf11.u U=DVecHKW
5 dihf11.s S=LSubSpU
6 1 2 3 4 5 dihf11lem KHLWHI:BS
7 1 2 3 dih11 KHLWHxByBIx=Iyx=y
8 7 biimpd KHLWHxByBIx=Iyx=y
9 8 3expb KHLWHxByBIx=Iyx=y
10 9 ralrimivva KHLWHxByBIx=Iyx=y
11 dff13 I:B1-1SI:BSxByBIx=Iyx=y
12 6 10 11 sylanbrc KHLWHI:B1-1S