Metamath Proof Explorer


Theorem dihval

Description: Value of isomorphism H for a lattice K . Definition of isomorphism map in Crawley p. 122 line 3. (Contributed by NM, 3-Feb-2014)

Ref Expression
Hypotheses dihval.b B=BaseK
dihval.l ˙=K
dihval.j ˙=joinK
dihval.m ˙=meetK
dihval.a A=AtomsK
dihval.h H=LHypK
dihval.i I=DIsoHKW
dihval.d D=DIsoBKW
dihval.c C=DIsoCKW
dihval.u U=DVecHKW
dihval.s S=LSubSpU
dihval.p ˙=LSSumU
Assertion dihval KVWHXBIX=ifX˙WDXιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W

Proof

Step Hyp Ref Expression
1 dihval.b B=BaseK
2 dihval.l ˙=K
3 dihval.j ˙=joinK
4 dihval.m ˙=meetK
5 dihval.a A=AtomsK
6 dihval.h H=LHypK
7 dihval.i I=DIsoHKW
8 dihval.d D=DIsoBKW
9 dihval.c C=DIsoCKW
10 dihval.u U=DVecHKW
11 dihval.s S=LSubSpU
12 dihval.p ˙=LSSumU
13 1 2 3 4 5 6 7 8 9 10 11 12 dihfval KVWHI=xBifx˙WDxιuS|qA¬q˙Wq˙x˙W=xu=Cq˙Dx˙W
14 13 fveq1d KVWHIX=xBifx˙WDxιuS|qA¬q˙Wq˙x˙W=xu=Cq˙Dx˙WX
15 breq1 x=Xx˙WX˙W
16 fveq2 x=XDx=DX
17 oveq1 x=Xx˙W=X˙W
18 17 oveq2d x=Xq˙x˙W=q˙X˙W
19 id x=Xx=X
20 18 19 eqeq12d x=Xq˙x˙W=xq˙X˙W=X
21 20 anbi2d x=X¬q˙Wq˙x˙W=x¬q˙Wq˙X˙W=X
22 fvoveq1 x=XDx˙W=DX˙W
23 22 oveq2d x=XCq˙Dx˙W=Cq˙DX˙W
24 23 eqeq2d x=Xu=Cq˙Dx˙Wu=Cq˙DX˙W
25 21 24 imbi12d x=X¬q˙Wq˙x˙W=xu=Cq˙Dx˙W¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
26 25 ralbidv x=XqA¬q˙Wq˙x˙W=xu=Cq˙Dx˙WqA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
27 26 riotabidv x=XιuS|qA¬q˙Wq˙x˙W=xu=Cq˙Dx˙W=ιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
28 15 16 27 ifbieq12d x=Xifx˙WDxιuS|qA¬q˙Wq˙x˙W=xu=Cq˙Dx˙W=ifX˙WDXιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
29 eqid xBifx˙WDxιuS|qA¬q˙Wq˙x˙W=xu=Cq˙Dx˙W=xBifx˙WDxιuS|qA¬q˙Wq˙x˙W=xu=Cq˙Dx˙W
30 fvex DXV
31 riotaex ιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙WV
32 30 31 ifex ifX˙WDXιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙WV
33 28 29 32 fvmpt XBxBifx˙WDxιuS|qA¬q˙Wq˙x˙W=xu=Cq˙Dx˙WX=ifX˙WDXιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
34 14 33 sylan9eq KVWHXBIX=ifX˙WDXιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W