Metamath Proof Explorer


Theorem dimpropd

Description: If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses dimpropd.b1 φB=BaseK
dimpropd.b2 φB=BaseL
dimpropd.w φBW
dimpropd.p φxWyWx+Ky=x+Ly
dimpropd.s1 φxPyBxKyW
dimpropd.s2 φxPyBxKy=xLy
dimpropd.f F=ScalarK
dimpropd.g G=ScalarL
dimpropd.p1 φP=BaseF
dimpropd.p2 φP=BaseG
dimpropd.a φxPyPx+Fy=x+Gy
dimpropd.v1 φKLVec
dimpropd.v2 φLLVec
Assertion dimpropd φdimK=dimL

Proof

Step Hyp Ref Expression
1 dimpropd.b1 φB=BaseK
2 dimpropd.b2 φB=BaseL
3 dimpropd.w φBW
4 dimpropd.p φxWyWx+Ky=x+Ly
5 dimpropd.s1 φxPyBxKyW
6 dimpropd.s2 φxPyBxKy=xLy
7 dimpropd.f F=ScalarK
8 dimpropd.g G=ScalarL
9 dimpropd.p1 φP=BaseF
10 dimpropd.p2 φP=BaseG
11 dimpropd.a φxPyPx+Fy=x+Gy
12 dimpropd.v1 φKLVec
13 dimpropd.v2 φLLVec
14 eqid LBasisK=LBasisK
15 14 lbsex KLVecLBasisK
16 12 15 syl φLBasisK
17 n0 LBasisKxxLBasisK
18 16 17 sylib φxxLBasisK
19 14 dimval KLVecxLBasisKdimK=x
20 12 19 sylan φxLBasisKdimK=x
21 1 2 3 4 5 6 7 8 9 10 11 12 13 lbspropd φLBasisK=LBasisL
22 21 eleq2d φxLBasisKxLBasisL
23 22 biimpa φxLBasisKxLBasisL
24 eqid LBasisL=LBasisL
25 24 dimval LLVecxLBasisLdimL=x
26 13 23 25 syl2an2r φxLBasisKdimL=x
27 20 26 eqtr4d φxLBasisKdimK=dimL
28 18 27 exlimddv φdimK=dimL