Metamath Proof Explorer


Theorem dirker2re

Description: The Dirichlet Kernel value is a real if the argument is not a multiple of π . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion dirker2re NS¬Smod2π=0sinN+12S2πsinS2

Proof

Step Hyp Ref Expression
1 nnre NN
2 1 ad2antrr NS¬Smod2π=0N
3 1red NS¬Smod2π=01
4 3 rehalfcld NS¬Smod2π=012
5 2 4 readdcld NS¬Smod2π=0N+12
6 simplr NS¬Smod2π=0S
7 5 6 remulcld NS¬Smod2π=0N+12S
8 7 resincld NS¬Smod2π=0sinN+12S
9 2re 2
10 9 a1i NS¬Smod2π=02
11 pire π
12 11 a1i NS¬Smod2π=0π
13 10 12 remulcld NS¬Smod2π=02π
14 6 rehalfcld NS¬Smod2π=0S2
15 14 resincld NS¬Smod2π=0sinS2
16 13 15 remulcld NS¬Smod2π=02πsinS2
17 2cnd S¬Smod2π=02
18 picn π
19 18 a1i S¬Smod2π=0π
20 17 19 mulcld S¬Smod2π=02π
21 recn SS
22 21 adantr S¬Smod2π=0S
23 22 halfcld S¬Smod2π=0S2
24 23 sincld S¬Smod2π=0sinS2
25 2ne0 20
26 25 a1i S¬Smod2π=020
27 0re 0
28 pipos 0<π
29 27 28 gtneii π0
30 29 a1i S¬Smod2π=0π0
31 17 19 26 30 mulne0d S¬Smod2π=02π0
32 22 17 19 26 30 divdiv1d S¬Smod2π=0S2π=S2π
33 simpr S¬Smod2π=0¬Smod2π=0
34 2rp 2+
35 pirp π+
36 rpmulcl 2+π+2π+
37 34 35 36 mp2an 2π+
38 mod0 S2π+Smod2π=0S2π
39 37 38 mpan2 SSmod2π=0S2π
40 39 adantr S¬Smod2π=0Smod2π=0S2π
41 33 40 mtbid S¬Smod2π=0¬S2π
42 32 41 eqneltrd S¬Smod2π=0¬S2π
43 sineq0 S2sinS2=0S2π
44 23 43 syl S¬Smod2π=0sinS2=0S2π
45 42 44 mtbird S¬Smod2π=0¬sinS2=0
46 45 neqned S¬Smod2π=0sinS20
47 20 24 31 46 mulne0d S¬Smod2π=02πsinS20
48 47 adantll NS¬Smod2π=02πsinS20
49 8 16 48 redivcld NS¬Smod2π=0sinN+12S2πsinS2