Metamath Proof Explorer


Theorem disji2f

Description: Property of a disjoint collection: if B ( x ) = C and B ( Y ) = D , and x =/= Y , then B and C are disjoint. (Contributed by Thierry Arnoux, 30-Dec-2016)

Ref Expression
Hypotheses disjif.1 _xC
disjif.2 x=YB=C
Assertion disji2f DisjxABxAYAxYBC=

Proof

Step Hyp Ref Expression
1 disjif.1 _xC
2 disjif.2 x=YB=C
3 df-ne xY¬x=Y
4 disjors DisjxAByAzAy=zy/xBz/xB=
5 equequ1 y=xy=zx=z
6 csbeq1 y=xy/xB=x/xB
7 csbid x/xB=B
8 6 7 eqtrdi y=xy/xB=B
9 8 ineq1d y=xy/xBz/xB=Bz/xB
10 9 eqeq1d y=xy/xBz/xB=Bz/xB=
11 5 10 orbi12d y=xy=zy/xBz/xB=x=zBz/xB=
12 eqeq2 z=Yx=zx=Y
13 nfcv _xY
14 13 1 2 csbhypf z=Yz/xB=C
15 14 ineq2d z=YBz/xB=BC
16 15 eqeq1d z=YBz/xB=BC=
17 12 16 orbi12d z=Yx=zBz/xB=x=YBC=
18 11 17 rspc2v xAYAyAzAy=zy/xBz/xB=x=YBC=
19 4 18 biimtrid xAYADisjxABx=YBC=
20 19 impcom DisjxABxAYAx=YBC=
21 20 ord DisjxABxAYA¬x=YBC=
22 3 21 biimtrid DisjxABxAYAxYBC=
23 22 3impia DisjxABxAYAxYBC=