Metamath Proof Explorer


Theorem distrlem5pr

Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996) (Revised by Mario Carneiro, 14-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion distrlem5pr A 𝑷 B 𝑷 C 𝑷 A 𝑷 B + 𝑷 A 𝑷 C A 𝑷 B + 𝑷 C

Proof

Step Hyp Ref Expression
1 mulclpr A 𝑷 B 𝑷 A 𝑷 B 𝑷
2 1 3adant3 A 𝑷 B 𝑷 C 𝑷 A 𝑷 B 𝑷
3 mulclpr A 𝑷 C 𝑷 A 𝑷 C 𝑷
4 df-plp + 𝑷 = x 𝑷 , y 𝑷 f | g x h y f = g + 𝑸 h
5 addclnq g 𝑸 h 𝑸 g + 𝑸 h 𝑸
6 4 5 genpelv A 𝑷 B 𝑷 A 𝑷 C 𝑷 w A 𝑷 B + 𝑷 A 𝑷 C v A 𝑷 B u A 𝑷 C w = v + 𝑸 u
7 2 3 6 3imp3i2an A 𝑷 B 𝑷 C 𝑷 w A 𝑷 B + 𝑷 A 𝑷 C v A 𝑷 B u A 𝑷 C w = v + 𝑸 u
8 df-mp 𝑷 = w 𝑷 , v 𝑷 x | g w h v x = g 𝑸 h
9 mulclnq g 𝑸 h 𝑸 g 𝑸 h 𝑸
10 8 9 genpelv A 𝑷 C 𝑷 u A 𝑷 C f A z C u = f 𝑸 z
11 10 3adant2 A 𝑷 B 𝑷 C 𝑷 u A 𝑷 C f A z C u = f 𝑸 z
12 11 anbi2d A 𝑷 B 𝑷 C 𝑷 v A 𝑷 B u A 𝑷 C v A 𝑷 B f A z C u = f 𝑸 z
13 df-mp 𝑷 = w 𝑷 , v 𝑷 f | g w h v f = g 𝑸 h
14 13 9 genpelv A 𝑷 B 𝑷 v A 𝑷 B x A y B v = x 𝑸 y
15 14 3adant3 A 𝑷 B 𝑷 C 𝑷 v A 𝑷 B x A y B v = x 𝑸 y
16 distrlem4pr A 𝑷 B 𝑷 C 𝑷 x A y B f A z C x 𝑸 y + 𝑸 f 𝑸 z A 𝑷 B + 𝑷 C
17 oveq12 v = x 𝑸 y u = f 𝑸 z v + 𝑸 u = x 𝑸 y + 𝑸 f 𝑸 z
18 17 eqeq2d v = x 𝑸 y u = f 𝑸 z w = v + 𝑸 u w = x 𝑸 y + 𝑸 f 𝑸 z
19 eleq1 w = x 𝑸 y + 𝑸 f 𝑸 z w A 𝑷 B + 𝑷 C x 𝑸 y + 𝑸 f 𝑸 z A 𝑷 B + 𝑷 C
20 18 19 syl6bi v = x 𝑸 y u = f 𝑸 z w = v + 𝑸 u w A 𝑷 B + 𝑷 C x 𝑸 y + 𝑸 f 𝑸 z A 𝑷 B + 𝑷 C
21 20 imp v = x 𝑸 y u = f 𝑸 z w = v + 𝑸 u w A 𝑷 B + 𝑷 C x 𝑸 y + 𝑸 f 𝑸 z A 𝑷 B + 𝑷 C
22 16 21 syl5ibrcom A 𝑷 B 𝑷 C 𝑷 x A y B f A z C v = x 𝑸 y u = f 𝑸 z w = v + 𝑸 u w A 𝑷 B + 𝑷 C
23 22 exp4b A 𝑷 B 𝑷 C 𝑷 x A y B f A z C v = x 𝑸 y u = f 𝑸 z w = v + 𝑸 u w A 𝑷 B + 𝑷 C
24 23 com3l x A y B f A z C v = x 𝑸 y u = f 𝑸 z A 𝑷 B 𝑷 C 𝑷 w = v + 𝑸 u w A 𝑷 B + 𝑷 C
25 24 exp4b x A y B f A z C v = x 𝑸 y u = f 𝑸 z A 𝑷 B 𝑷 C 𝑷 w = v + 𝑸 u w A 𝑷 B + 𝑷 C
26 25 com23 x A y B v = x 𝑸 y f A z C u = f 𝑸 z A 𝑷 B 𝑷 C 𝑷 w = v + 𝑸 u w A 𝑷 B + 𝑷 C
27 26 rexlimivv x A y B v = x 𝑸 y f A z C u = f 𝑸 z A 𝑷 B 𝑷 C 𝑷 w = v + 𝑸 u w A 𝑷 B + 𝑷 C
28 27 rexlimdvv x A y B v = x 𝑸 y f A z C u = f 𝑸 z A 𝑷 B 𝑷 C 𝑷 w = v + 𝑸 u w A 𝑷 B + 𝑷 C
29 28 com3r A 𝑷 B 𝑷 C 𝑷 x A y B v = x 𝑸 y f A z C u = f 𝑸 z w = v + 𝑸 u w A 𝑷 B + 𝑷 C
30 15 29 sylbid A 𝑷 B 𝑷 C 𝑷 v A 𝑷 B f A z C u = f 𝑸 z w = v + 𝑸 u w A 𝑷 B + 𝑷 C
31 30 impd A 𝑷 B 𝑷 C 𝑷 v A 𝑷 B f A z C u = f 𝑸 z w = v + 𝑸 u w A 𝑷 B + 𝑷 C
32 12 31 sylbid A 𝑷 B 𝑷 C 𝑷 v A 𝑷 B u A 𝑷 C w = v + 𝑸 u w A 𝑷 B + 𝑷 C
33 32 rexlimdvv A 𝑷 B 𝑷 C 𝑷 v A 𝑷 B u A 𝑷 C w = v + 𝑸 u w A 𝑷 B + 𝑷 C
34 7 33 sylbid A 𝑷 B 𝑷 C 𝑷 w A 𝑷 B + 𝑷 A 𝑷 C w A 𝑷 B + 𝑷 C
35 34 ssrdv A 𝑷 B 𝑷 C 𝑷 A 𝑷 B + 𝑷 A 𝑷 C A 𝑷 B + 𝑷 C