Metamath Proof Explorer


Theorem divalglem1

Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Hypotheses divalglem0.1 N
divalglem0.2 D
divalglem1.3 D0
Assertion divalglem1 0N+ND

Proof

Step Hyp Ref Expression
1 divalglem0.1 N
2 divalglem0.2 D
3 divalglem1.3 D0
4 1 zrei N
5 0re 0
6 4 5 letrii N00N
7 nnabscl DD0D
8 2 3 7 mp2an D
9 nnge1 D1D
10 8 9 ax-mp 1D
11 le0neg1 NN00N
12 4 11 ax-mp N00N
13 4 renegcli N
14 2 zrei D
15 14 recni D
16 15 abscli D
17 lemulge11 ND0N1DN- ND
18 13 16 17 mpanl12 0N1DN- ND
19 12 18 sylanb N01DN- ND
20 10 19 mpan2 N0N- ND
21 4 recni N
22 21 15 absmuli ND=ND
23 4 absnidi N0N=N
24 23 oveq1d N0ND=- ND
25 22 24 eqtrid N0ND=- ND
26 20 25 breqtrrd N0NND
27 le0neg2 N0NN0
28 4 27 ax-mp 0NN0
29 4 14 remulcli ND
30 29 recni ND
31 30 absge0i 0ND
32 30 abscli ND
33 13 5 32 letri N00NDNND
34 31 33 mpan2 N0NND
35 28 34 sylbi 0NNND
36 26 35 jaoi N00NNND
37 6 36 ax-mp NND
38 df-neg N=0N
39 38 breq1i NND0NND
40 5 4 32 lesubadd2i 0NND0N+ND
41 39 40 bitri NND0N+ND
42 37 41 mpbi 0N+ND