Metamath Proof Explorer


Theorem divsfval

Description: Value of the function in qusval . (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses ercpbl.r φ˙ErV
ercpbl.v φVW
ercpbl.f F=xVx˙
Assertion divsfval φFA=A˙

Proof

Step Hyp Ref Expression
1 ercpbl.r φ˙ErV
2 ercpbl.v φVW
3 ercpbl.f F=xVx˙
4 1 ecss φA˙V
5 2 4 ssexd φA˙V
6 eceq1 x=Ax˙=A˙
7 6 3 fvmptg AVA˙VFA=A˙
8 5 7 sylan2 AVφFA=A˙
9 8 expcom φAVFA=A˙
10 3 dmeqi domF=domxVx˙
11 1 ecss φx˙V
12 2 11 ssexd φx˙V
13 12 ralrimivw φxVx˙V
14 dmmptg xVx˙VdomxVx˙=V
15 13 14 syl φdomxVx˙=V
16 10 15 eqtrid φdomF=V
17 16 eleq2d φAdomFAV
18 17 notbid φ¬AdomF¬AV
19 ndmfv ¬AdomFFA=
20 18 19 syl6bir φ¬AVFA=
21 ecdmn0 Adom˙A˙
22 erdm ˙ErVdom˙=V
23 1 22 syl φdom˙=V
24 23 eleq2d φAdom˙AV
25 24 biimpd φAdom˙AV
26 21 25 biimtrrid φA˙AV
27 26 necon1bd φ¬AVA˙=
28 20 27 jcad φ¬AVFA=A˙=
29 eqtr3 FA=A˙=FA=A˙
30 28 29 syl6 φ¬AVFA=A˙
31 9 30 pm2.61d φFA=A˙