Metamath Proof Explorer


Theorem djhj

Description: DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 17-Aug-2014)

Ref Expression
Hypotheses djhj.k ˙=joinK
djhj.h H=LHypK
djhj.i I=DIsoHKW
djhj.j J=joinHKW
djhj.w φKHLWH
djhj.x φXranI
djhj.y φYranI
Assertion djhj φI-1XJY=I-1X˙I-1Y

Proof

Step Hyp Ref Expression
1 djhj.k ˙=joinK
2 djhj.h H=LHypK
3 djhj.i I=DIsoHKW
4 djhj.j J=joinHKW
5 djhj.w φKHLWH
6 djhj.x φXranI
7 djhj.y φYranI
8 1 2 3 4 5 6 7 djhjlj φXJY=II-1X˙I-1Y
9 8 fveq2d φI-1XJY=I-1II-1X˙I-1Y
10 5 simpld φKHL
11 10 hllatd φKLat
12 eqid BaseK=BaseK
13 12 2 3 dihcnvcl KHLWHXranII-1XBaseK
14 5 6 13 syl2anc φI-1XBaseK
15 12 2 3 dihcnvcl KHLWHYranII-1YBaseK
16 5 7 15 syl2anc φI-1YBaseK
17 12 1 latjcl KLatI-1XBaseKI-1YBaseKI-1X˙I-1YBaseK
18 11 14 16 17 syl3anc φI-1X˙I-1YBaseK
19 12 2 3 dihcnvid1 KHLWHI-1X˙I-1YBaseKI-1II-1X˙I-1Y=I-1X˙I-1Y
20 5 18 19 syl2anc φI-1II-1X˙I-1Y=I-1X˙I-1Y
21 9 20 eqtrd φI-1XJY=I-1X˙I-1Y