Metamath Proof Explorer


Theorem djuassen

Description: Associative law for cardinal addition. Exercise 4.56(c) of Mendelson p. 258. (Contributed by NM, 26-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion djuassen AVBWCXA⊔︀B⊔︀CA⊔︀B⊔︀C

Proof

Step Hyp Ref Expression
1 0ex V
2 simp1 AVBWCXAV
3 xpsnen2g VAV×AA
4 1 2 3 sylancr AVBWCX×AA
5 4 ensymd AVBWCXA×A
6 1oex 1𝑜V
7 snex V
8 simp2 AVBWCXBW
9 xpexg VBW×BV
10 7 8 9 sylancr AVBWCX×BV
11 xpsnen2g 1𝑜V×BV1𝑜××B×B
12 6 10 11 sylancr AVBWCX1𝑜××B×B
13 xpsnen2g VBW×BB
14 1 8 13 sylancr AVBWCX×BB
15 entr 1𝑜××B×B×BB1𝑜××BB
16 12 14 15 syl2anc AVBWCX1𝑜××BB
17 16 ensymd AVBWCXB1𝑜××B
18 xp01disjl ×A1𝑜××B=
19 18 a1i AVBWCX×A1𝑜××B=
20 djuenun A×AB1𝑜××B×A1𝑜××B=A⊔︀B×A1𝑜××B
21 5 17 19 20 syl3anc AVBWCXA⊔︀B×A1𝑜××B
22 snex 1𝑜V
23 simp3 AVBWCXCX
24 xpexg 1𝑜VCX1𝑜×CV
25 22 23 24 sylancr AVBWCX1𝑜×CV
26 xpsnen2g 1𝑜V1𝑜×CV1𝑜×1𝑜×C1𝑜×C
27 6 25 26 sylancr AVBWCX1𝑜×1𝑜×C1𝑜×C
28 xpsnen2g 1𝑜VCX1𝑜×CC
29 6 23 28 sylancr AVBWCX1𝑜×CC
30 entr 1𝑜×1𝑜×C1𝑜×C1𝑜×CC1𝑜×1𝑜×CC
31 27 29 30 syl2anc AVBWCX1𝑜×1𝑜×CC
32 31 ensymd AVBWCXC1𝑜×1𝑜×C
33 indir ×A1𝑜××B1𝑜×1𝑜×C=×A1𝑜×1𝑜×C1𝑜××B1𝑜×1𝑜×C
34 xp01disjl ×A1𝑜×1𝑜×C=
35 xp01disjl ×B1𝑜×C=
36 35 xpeq2i 1𝑜××B1𝑜×C=1𝑜×
37 xpindi 1𝑜××B1𝑜×C=1𝑜××B1𝑜×1𝑜×C
38 xp0 1𝑜×=
39 36 37 38 3eqtr3i 1𝑜××B1𝑜×1𝑜×C=
40 34 39 uneq12i ×A1𝑜×1𝑜×C1𝑜××B1𝑜×1𝑜×C=
41 un0 =
42 40 41 eqtri ×A1𝑜×1𝑜×C1𝑜××B1𝑜×1𝑜×C=
43 33 42 eqtri ×A1𝑜××B1𝑜×1𝑜×C=
44 43 a1i AVBWCX×A1𝑜××B1𝑜×1𝑜×C=
45 djuenun A⊔︀B×A1𝑜××BC1𝑜×1𝑜×C×A1𝑜××B1𝑜×1𝑜×C=A⊔︀B⊔︀C×A1𝑜××B1𝑜×1𝑜×C
46 21 32 44 45 syl3anc AVBWCXA⊔︀B⊔︀C×A1𝑜××B1𝑜×1𝑜×C
47 df-dju B⊔︀C=×B1𝑜×C
48 47 xpeq2i 1𝑜×B⊔︀C=1𝑜××B1𝑜×C
49 xpundi 1𝑜××B1𝑜×C=1𝑜××B1𝑜×1𝑜×C
50 48 49 eqtri 1𝑜×B⊔︀C=1𝑜××B1𝑜×1𝑜×C
51 50 uneq2i ×A1𝑜×B⊔︀C=×A1𝑜××B1𝑜×1𝑜×C
52 df-dju A⊔︀B⊔︀C=×A1𝑜×B⊔︀C
53 unass ×A1𝑜××B1𝑜×1𝑜×C=×A1𝑜××B1𝑜×1𝑜×C
54 51 52 53 3eqtr4i A⊔︀B⊔︀C=×A1𝑜××B1𝑜×1𝑜×C
55 46 54 breqtrrdi AVBWCXA⊔︀B⊔︀CA⊔︀B⊔︀C