Metamath Proof Explorer


Theorem dmdbr6ati

Description: Dual modular pair property in terms of atoms. The modular law takes the form of the shearing identity. (Contributed by NM, 18-Jan-2005) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 A C
sumdmdi.2 B C
Assertion dmdbr6ati A 𝑀 * B x HAtoms A B x = x B A B x

Proof

Step Hyp Ref Expression
1 sumdmdi.1 A C
2 sumdmdi.2 B C
3 dmdbr3 A C B C A 𝑀 * B x C x B A B = x B A B
4 1 2 3 mp2an A 𝑀 * B x C x B A B = x B A B
5 chabs2 x C B C x x B = x
6 2 5 mpan2 x C x x B = x
7 6 ineq2d x C A B x x B = A B x
8 incom A B x x B = x x B A B
9 inass x x B A B = x x B A B
10 incom x x B A B = x B A B x
11 8 9 10 3eqtri A B x x B = x B A B x
12 7 11 eqtr3di x C A B x = x B A B x
13 12 adantr x C x B A B = x B A B A B x = x B A B x
14 ineq1 x B A B = x B A B x B A B x = x B A B x
15 14 adantl x C x B A B = x B A B x B A B x = x B A B x
16 13 15 eqtr4d x C x B A B = x B A B A B x = x B A B x
17 16 ralimiaa x C x B A B = x B A B x C A B x = x B A B x
18 4 17 sylbi A 𝑀 * B x C A B x = x B A B x
19 atelch x HAtoms x C
20 19 imim1i x C A B x = x B A B x x HAtoms A B x = x B A B x
21 20 ralimi2 x C A B x = x B A B x x HAtoms A B x = x B A B x
22 18 21 syl A 𝑀 * B x HAtoms A B x = x B A B x
23 inss1 x B A B x x B A B
24 sseq1 A B x = x B A B x A B x x B A B x B A B x x B A B
25 23 24 mpbiri A B x = x B A B x A B x x B A B
26 incom A B x = x A B
27 df-ss x A B x A B = x
28 27 biimpi x A B x A B = x
29 26 28 syl5eq x A B A B x = x
30 29 sseq1d x A B A B x x B A B x x B A B
31 25 30 syl5ibcom A B x = x B A B x x A B x x B A B
32 31 ralimi x HAtoms A B x = x B A B x x HAtoms x A B x x B A B
33 1 2 dmdbr5ati A 𝑀 * B x HAtoms x A B x x B A B
34 32 33 sylibr x HAtoms A B x = x B A B x A 𝑀 * B
35 22 34 impbii A 𝑀 * B x HAtoms A B x = x B A B x