Metamath Proof Explorer


Theorem dnibndlem12

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem12.1 T = x x + 1 2 x
dnibndlem12.2 φ A
dnibndlem12.3 φ B
dnibndlem12.4 φ A + 1 2 + 2 B + 1 2
Assertion dnibndlem12 φ T B T A B A

Proof

Step Hyp Ref Expression
1 dnibndlem12.1 T = x x + 1 2 x
2 dnibndlem12.2 φ A
3 dnibndlem12.3 φ B
4 dnibndlem12.4 φ A + 1 2 + 2 B + 1 2
5 3 dnicld1 φ B + 1 2 B
6 2 dnicld1 φ A + 1 2 A
7 5 6 resubcld φ B + 1 2 B A + 1 2 A
8 7 recnd φ B + 1 2 B A + 1 2 A
9 8 abscld φ B + 1 2 B A + 1 2 A
10 1red φ 1
11 3 2 resubcld φ B A
12 11 recnd φ B A
13 12 abscld φ B A
14 10 rehalfcld φ 1 2
15 2 3 dnibndlem11 φ B + 1 2 B A + 1 2 A 1 2
16 halflt1 1 2 < 1
17 halfre 1 2
18 1re 1
19 17 18 pm3.2i 1 2 1
20 ltle 1 2 1 1 2 < 1 1 2 1
21 19 20 ax-mp 1 2 < 1 1 2 1
22 16 21 ax-mp 1 2 1
23 22 a1i φ 1 2 1
24 9 14 10 15 23 letrd φ B + 1 2 B A + 1 2 A 1
25 2 3 4 dnibndlem10 φ 1 B A
26 11 leabsd φ B A B A
27 10 11 13 25 26 letrd φ 1 B A
28 9 10 13 24 27 letrd φ B + 1 2 B A + 1 2 A B A
29 1 2 3 dnibndlem1 φ T B T A B A B + 1 2 B A + 1 2 A B A
30 28 29 mpbird φ T B T A B A