Metamath Proof Explorer


Theorem dnibndlem5

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Assertion dnibndlem5 A0<A+12+12-A

Proof

Step Hyp Ref Expression
1 id AA
2 halfre 12
3 2 a1i A12
4 readdcl A12A+12
5 1 3 4 syl2anc2 AA+12
6 flltp1 A+12A+12<A+12+1
7 5 6 syl AA+12<A+12+1
8 ax-1cn 1
9 2halves 112+12=1
10 8 9 ax-mp 12+12=1
11 10 eqcomi 1=12+12
12 11 a1i A1=12+12
13 12 oveq2d AA+12+1=A+12+12+12
14 reflcl A+12A+12
15 5 14 syl AA+12
16 15 recnd AA+12
17 3 recnd A12
18 16 17 17 3jca AA+121212
19 addass A+121212A+12+12+12=A+12+12+12
20 18 19 syl AA+12+12+12=A+12+12+12
21 20 eqcomd AA+12+12+12=A+12+12+12
22 13 21 eqtrd AA+12+1=A+12+12+12
23 7 22 breqtrd AA+12<A+12+12+12
24 15 3 jca AA+1212
25 readdcl A+1212A+12+12
26 24 25 syl AA+12+12
27 1 26 3 ltadd1d AA<A+12+12A+12<A+12+12+12
28 23 27 mpbird AA<A+12+12
29 1 26 posdifd AA<A+12+120<A+12+12-A
30 28 29 mpbid A0<A+12+12-A