Metamath Proof Explorer


Theorem dnwech

Description: Define a well-ordering from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Hypotheses dnnumch.f F=recszVGAranz
dnnumch.a φAV
dnnumch.g φy𝒫AyGyy
dnwech.h H=vw|F-1vF-1w
Assertion dnwech φHWeA

Proof

Step Hyp Ref Expression
1 dnnumch.f F=recszVGAranz
2 dnnumch.a φAV
3 dnnumch.g φy𝒫AyGyy
4 dnwech.h H=vw|F-1vF-1w
5 1 2 3 dnnumch3 φxAF-1x:A1-1On
6 f1f1orn xAF-1x:A1-1OnxAF-1x:A1-1 ontoranxAF-1x
7 5 6 syl φxAF-1x:A1-1 ontoranxAF-1x
8 f1f xAF-1x:A1-1OnxAF-1x:AOn
9 frn xAF-1x:AOnranxAF-1xOn
10 5 8 9 3syl φranxAF-1xOn
11 epweon EWeOn
12 wess ranxAF-1xOnEWeOnEWeranxAF-1x
13 10 11 12 mpisyl φEWeranxAF-1x
14 eqid vw|xAF-1xvExAF-1xw=vw|xAF-1xvExAF-1xw
15 14 f1owe xAF-1x:A1-1 ontoranxAF-1xEWeranxAF-1xvw|xAF-1xvExAF-1xwWeA
16 7 13 15 sylc φvw|xAF-1xvExAF-1xwWeA
17 fvex xAF-1xwV
18 17 epeli xAF-1xvExAF-1xwxAF-1xvxAF-1xw
19 1 2 3 dnnumch3lem φvAxAF-1xv=F-1v
20 19 adantrr φvAwAxAF-1xv=F-1v
21 1 2 3 dnnumch3lem φwAxAF-1xw=F-1w
22 21 adantrl φvAwAxAF-1xw=F-1w
23 20 22 eleq12d φvAwAxAF-1xvxAF-1xwF-1vF-1w
24 18 23 bitr2id φvAwAF-1vF-1wxAF-1xvExAF-1xw
25 24 pm5.32da φvAwAF-1vF-1wvAwAxAF-1xvExAF-1xw
26 25 opabbidv φvw|vAwAF-1vF-1w=vw|vAwAxAF-1xvExAF-1xw
27 incom HA×A=A×AH
28 df-xp A×A=vw|vAwA
29 28 4 ineq12i A×AH=vw|vAwAvw|F-1vF-1w
30 inopab vw|vAwAvw|F-1vF-1w=vw|vAwAF-1vF-1w
31 27 29 30 3eqtri HA×A=vw|vAwAF-1vF-1w
32 incom vw|xAF-1xvExAF-1xwA×A=A×Avw|xAF-1xvExAF-1xw
33 28 ineq1i A×Avw|xAF-1xvExAF-1xw=vw|vAwAvw|xAF-1xvExAF-1xw
34 inopab vw|vAwAvw|xAF-1xvExAF-1xw=vw|vAwAxAF-1xvExAF-1xw
35 32 33 34 3eqtri vw|xAF-1xvExAF-1xwA×A=vw|vAwAxAF-1xvExAF-1xw
36 26 31 35 3eqtr4g φHA×A=vw|xAF-1xvExAF-1xwA×A
37 weeq1 HA×A=vw|xAF-1xvExAF-1xwA×AHA×AWeAvw|xAF-1xvExAF-1xwA×AWeA
38 36 37 syl φHA×AWeAvw|xAF-1xvExAF-1xwA×AWeA
39 weinxp HWeAHA×AWeA
40 weinxp vw|xAF-1xvExAF-1xwWeAvw|xAF-1xvExAF-1xwA×AWeA
41 38 39 40 3bitr4g φHWeAvw|xAF-1xvExAF-1xwWeA
42 16 41 mpbird φHWeA