Metamath Proof Explorer


Theorem dochexmidlem3

Description: Lemma for dochexmid . Use atom exchange lsatexch1 to swap p and q . (Contributed by NM, 14-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H = LHyp K
dochexmidlem1.o ˙ = ocH K W
dochexmidlem1.u U = DVecH K W
dochexmidlem1.v V = Base U
dochexmidlem1.s S = LSubSp U
dochexmidlem1.n N = LSpan U
dochexmidlem1.p ˙ = LSSum U
dochexmidlem1.a A = LSAtoms U
dochexmidlem1.k φ K HL W H
dochexmidlem1.x φ X S
dochexmidlem3.pp φ p A
dochexmidlem3.qq φ q A
dochexmidlem3.rr φ r A
dochexmidlem3.ql φ q ˙ X
dochexmidlem3.rl φ r X
dochexmidlem3.pl φ q r ˙ p
Assertion dochexmidlem3 φ p X ˙ ˙ X

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H = LHyp K
2 dochexmidlem1.o ˙ = ocH K W
3 dochexmidlem1.u U = DVecH K W
4 dochexmidlem1.v V = Base U
5 dochexmidlem1.s S = LSubSp U
6 dochexmidlem1.n N = LSpan U
7 dochexmidlem1.p ˙ = LSSum U
8 dochexmidlem1.a A = LSAtoms U
9 dochexmidlem1.k φ K HL W H
10 dochexmidlem1.x φ X S
11 dochexmidlem3.pp φ p A
12 dochexmidlem3.qq φ q A
13 dochexmidlem3.rr φ r A
14 dochexmidlem3.ql φ q ˙ X
15 dochexmidlem3.rl φ r X
16 dochexmidlem3.pl φ q r ˙ p
17 1 3 9 dvhlvec φ U LVec
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 dochexmidlem1 φ q r
19 7 8 17 12 11 13 16 18 lsatexch1 φ p r ˙ q
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 dochexmidlem2 φ p X ˙ ˙ X