Metamath Proof Explorer


Theorem dochvalr2

Description: Orthocomplement of a closed subspace. (Contributed by NM, 21-Jul-2014)

Ref Expression
Hypotheses dochvalr2.b B=BaseK
dochvalr2.o ˙=ocK
dochvalr2.h H=LHypK
dochvalr2.i I=DIsoHKW
dochvalr2.n N=ocHKW
Assertion dochvalr2 KHLWHXBNIX=I˙X

Proof

Step Hyp Ref Expression
1 dochvalr2.b B=BaseK
2 dochvalr2.o ˙=ocK
3 dochvalr2.h H=LHypK
4 dochvalr2.i I=DIsoHKW
5 dochvalr2.n N=ocHKW
6 1 3 4 dihcl KHLWHXBIXranI
7 2 3 4 5 dochvalr KHLWHIXranINIX=I˙I-1IX
8 6 7 syldan KHLWHXBNIX=I˙I-1IX
9 1 3 4 dihcnvid1 KHLWHXBI-1IX=X
10 9 fveq2d KHLWHXB˙I-1IX=˙X
11 10 fveq2d KHLWHXBI˙I-1IX=I˙X
12 8 11 eqtrd KHLWHXBNIX=I˙X