Metamath Proof Explorer


Theorem dvdsrneg

Description: An element divides its negative. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses dvdsr.1 B=BaseR
dvdsr.2 ˙=rR
dvdsrneg.5 N=invgR
Assertion dvdsrneg RRingXBX˙NX

Proof

Step Hyp Ref Expression
1 dvdsr.1 B=BaseR
2 dvdsr.2 ˙=rR
3 dvdsrneg.5 N=invgR
4 id XBXB
5 ringgrp RRingRGrp
6 eqid 1R=1R
7 1 6 ringidcl RRing1RB
8 1 3 grpinvcl RGrp1RBN1RB
9 5 7 8 syl2anc RRingN1RB
10 eqid R=R
11 1 2 10 dvdsrmul XBN1RBX˙N1RRX
12 4 9 11 syl2anr RRingXBX˙N1RRX
13 simpl RRingXBRRing
14 simpr RRingXBXB
15 1 10 6 3 13 14 ringnegl RRingXBN1RRX=NX
16 12 15 breqtrd RRingXBX˙NX