Metamath Proof Explorer


Theorem dvhvaddcomN

Description: Commutativity of vector sum. (Contributed by NM, 26-Oct-2013) (Revised by Mario Carneiro, 23-Jun-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dvhvaddcl.h H=LHypK
dvhvaddcl.t T=LTrnKW
dvhvaddcl.e E=TEndoKW
dvhvaddcl.u U=DVecHKW
dvhvaddcl.d D=ScalarU
dvhvaddcl.p ˙=+D
dvhvaddcl.a +˙=+U
Assertion dvhvaddcomN KHLWHFT×EGT×EF+˙G=G+˙F

Proof

Step Hyp Ref Expression
1 dvhvaddcl.h H=LHypK
2 dvhvaddcl.t T=LTrnKW
3 dvhvaddcl.e E=TEndoKW
4 dvhvaddcl.u U=DVecHKW
5 dvhvaddcl.d D=ScalarU
6 dvhvaddcl.p ˙=+D
7 dvhvaddcl.a +˙=+U
8 simpl KHLWHFT×EGT×EKHLWH
9 xp1st FT×E1stFT
10 9 ad2antrl KHLWHFT×EGT×E1stFT
11 xp1st GT×E1stGT
12 11 ad2antll KHLWHFT×EGT×E1stGT
13 1 2 ltrncom KHLWH1stFT1stGT1stF1stG=1stG1stF
14 8 10 12 13 syl3anc KHLWHFT×EGT×E1stF1stG=1stG1stF
15 xp2nd FT×E2ndFE
16 xp2nd GT×E2ndGE
17 15 16 anim12i FT×EGT×E2ndFE2ndGE
18 eqid aE,bEcTacbc=aE,bEcTacbc
19 1 2 3 18 tendoplcom KHLWH2ndFE2ndGE2ndFaE,bEcTacbc2ndG=2ndGaE,bEcTacbc2ndF
20 19 3expb KHLWH2ndFE2ndGE2ndFaE,bEcTacbc2ndG=2ndGaE,bEcTacbc2ndF
21 17 20 sylan2 KHLWHFT×EGT×E2ndFaE,bEcTacbc2ndG=2ndGaE,bEcTacbc2ndF
22 1 2 3 4 5 18 6 dvhfplusr KHLWH˙=aE,bEcTacbc
23 22 adantr KHLWHFT×EGT×E˙=aE,bEcTacbc
24 23 oveqd KHLWHFT×EGT×E2ndF˙2ndG=2ndFaE,bEcTacbc2ndG
25 23 oveqd KHLWHFT×EGT×E2ndG˙2ndF=2ndGaE,bEcTacbc2ndF
26 21 24 25 3eqtr4d KHLWHFT×EGT×E2ndF˙2ndG=2ndG˙2ndF
27 14 26 opeq12d KHLWHFT×EGT×E1stF1stG2ndF˙2ndG=1stG1stF2ndG˙2ndF
28 1 2 3 4 5 7 6 dvhvadd KHLWHFT×EGT×EF+˙G=1stF1stG2ndF˙2ndG
29 1 2 3 4 5 7 6 dvhvadd KHLWHGT×EFT×EG+˙F=1stG1stF2ndG˙2ndF
30 29 ancom2s KHLWHFT×EGT×EG+˙F=1stG1stF2ndG˙2ndF
31 27 28 30 3eqtr4d KHLWHFT×EGT×EF+˙G=G+˙F