Metamath Proof Explorer


Theorem dvhvbase

Description: The vectors (vector base set) of the constructed full vector space H are all translations (for a fiducial co-atom W ). (Contributed by NM, 2-Nov-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvhvbase.h H=LHypK
dvhvbase.t T=LTrnKW
dvhvbase.e E=TEndoKW
dvhvbase.u U=DVecHKW
dvhvbase.v V=BaseU
Assertion dvhvbase KXWHV=T×E

Proof

Step Hyp Ref Expression
1 dvhvbase.h H=LHypK
2 dvhvbase.t T=LTrnKW
3 dvhvbase.e E=TEndoKW
4 dvhvbase.u U=DVecHKW
5 dvhvbase.v V=BaseU
6 eqid EDRingKW=EDRingKW
7 1 2 3 6 4 dvhset KXWHU=BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
8 7 fveq2d KXWHBaseU=BaseBasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
9 2 fvexi TV
10 3 fvexi EV
11 9 10 xpex T×EV
12 eqid BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf=BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
13 12 lmodbase T×EVT×E=BaseBasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
14 11 13 ax-mp T×E=BaseBasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
15 8 5 14 3eqtr4g KXWHV=T×E