Metamath Proof Explorer


Theorem dvmptmulf

Description: Function-builder for derivative, product rule. A version of dvmptmul using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvmptmulf.ph xφ
dvmptmulf.s φS
dvmptmulf.a φxXA
dvmptmulf.b φxXBV
dvmptmulf.ab φdxXAdSx=xXB
dvmptmulf.c φxXC
dvmptmulf.d φxXDW
dvmptmulf.cd φdxXCdSx=xXD
Assertion dvmptmulf φdxXACdSx=xXBC+DA

Proof

Step Hyp Ref Expression
1 dvmptmulf.ph xφ
2 dvmptmulf.s φS
3 dvmptmulf.a φxXA
4 dvmptmulf.b φxXBV
5 dvmptmulf.ab φdxXAdSx=xXB
6 dvmptmulf.c φxXC
7 dvmptmulf.d φxXDW
8 dvmptmulf.cd φdxXCdSx=xXD
9 nfcv _yAC
10 nfcsb1v _xy/xA
11 nfcv _x×
12 nfcsb1v _xy/xC
13 10 11 12 nfov _xy/xAy/xC
14 csbeq1a x=yA=y/xA
15 csbeq1a x=yC=y/xC
16 14 15 oveq12d x=yAC=y/xAy/xC
17 9 13 16 cbvmpt xXAC=yXy/xAy/xC
18 17 oveq2i dxXACdSx=dyXy/xAy/xCdSy
19 18 a1i φdxXACdSx=dyXy/xAy/xCdSy
20 nfv xyX
21 1 20 nfan xφyX
22 10 nfel1 xy/xA
23 21 22 nfim xφyXy/xA
24 eleq1w x=yxXyX
25 24 anbi2d x=yφxXφyX
26 14 eleq1d x=yAy/xA
27 25 26 imbi12d x=yφxXAφyXy/xA
28 23 27 3 chvarfv φyXy/xA
29 nfcv _xy
30 29 nfcsb1 _xy/xB
31 nfcv _xV
32 30 31 nfel xy/xBV
33 21 32 nfim xφyXy/xBV
34 csbeq1a x=yB=y/xB
35 34 eleq1d x=yBVy/xBV
36 25 35 imbi12d x=yφxXBVφyXy/xBV
37 33 36 4 chvarfv φyXy/xBV
38 nfcv _yA
39 csbeq1a y=xy/xA=x/yy/xA
40 csbcow x/yy/xA=x/xA
41 csbid x/xA=A
42 40 41 eqtri x/yy/xA=A
43 42 a1i y=xx/yy/xA=A
44 39 43 eqtrd y=xy/xA=A
45 10 38 44 cbvmpt yXy/xA=xXA
46 45 oveq2i dyXy/xAdSy=dxXAdSx
47 46 a1i φdyXy/xAdSy=dxXAdSx
48 nfcv _yB
49 48 30 34 cbvmpt xXB=yXy/xB
50 49 a1i φxXB=yXy/xB
51 47 5 50 3eqtrd φdyXy/xAdSy=yXy/xB
52 12 nfel1 xy/xC
53 21 52 nfim xφyXy/xC
54 15 eleq1d x=yCy/xC
55 25 54 imbi12d x=yφxXCφyXy/xC
56 53 55 6 chvarfv φyXy/xC
57 29 nfcsb1 _xy/xD
58 nfcv _xW
59 57 58 nfel xy/xDW
60 21 59 nfim xφyXy/xDW
61 csbeq1a x=yD=y/xD
62 61 eleq1d x=yDWy/xDW
63 25 62 imbi12d x=yφxXDWφyXy/xDW
64 60 63 7 chvarfv φyXy/xDW
65 nfcv _yC
66 eqcom x=yy=x
67 66 imbi1i x=yC=y/xCy=xC=y/xC
68 eqcom C=y/xCy/xC=C
69 68 imbi2i y=xC=y/xCy=xy/xC=C
70 67 69 bitri x=yC=y/xCy=xy/xC=C
71 15 70 mpbi y=xy/xC=C
72 12 65 71 cbvmpt yXy/xC=xXC
73 72 oveq2i dyXy/xCdSy=dxXCdSx
74 73 a1i φdyXy/xCdSy=dxXCdSx
75 nfcv _yD
76 75 57 61 cbvmpt xXD=yXy/xD
77 76 a1i φxXD=yXy/xD
78 74 8 77 3eqtrd φdyXy/xCdSy=yXy/xD
79 2 28 37 51 56 64 78 dvmptmul φdyXy/xAy/xCdSy=yXy/xBy/xC+y/xDy/xA
80 30 11 12 nfov _xy/xBy/xC
81 nfcv _x+
82 57 11 10 nfov _xy/xDy/xA
83 80 81 82 nfov _xy/xBy/xC+y/xDy/xA
84 nfcv _yBC+DA
85 66 imbi1i x=yB=y/xBy=xB=y/xB
86 eqcom B=y/xBy/xB=B
87 86 imbi2i y=xB=y/xBy=xy/xB=B
88 85 87 bitri x=yB=y/xBy=xy/xB=B
89 34 88 mpbi y=xy/xB=B
90 89 71 oveq12d y=xy/xBy/xC=BC
91 66 imbi1i x=yD=y/xDy=xD=y/xD
92 eqcom D=y/xDy/xD=D
93 92 imbi2i y=xD=y/xDy=xy/xD=D
94 91 93 bitri x=yD=y/xDy=xy/xD=D
95 61 94 mpbi y=xy/xD=D
96 95 44 oveq12d y=xy/xDy/xA=DA
97 90 96 oveq12d y=xy/xBy/xC+y/xDy/xA=BC+DA
98 83 84 97 cbvmpt yXy/xBy/xC+y/xDy/xA=xXBC+DA
99 98 a1i φyXy/xBy/xC+y/xDy/xA=xXBC+DA
100 19 79 99 3eqtrd φdxXACdSx=xXBC+DA