Description: A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvmulcncf.s | |
|
dvmulcncf.f | |
||
dvmulcncf.g | |
||
dvmulcncf.fdv | |
||
dvmulcncf.gdv | |
||
Assertion | dvmulcncf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmulcncf.s | |
|
2 | dvmulcncf.f | |
|
3 | dvmulcncf.g | |
|
4 | dvmulcncf.fdv | |
|
5 | dvmulcncf.gdv | |
|
6 | cncff | |
|
7 | fdm | |
|
8 | 4 6 7 | 3syl | |
9 | cncff | |
|
10 | fdm | |
|
11 | 5 9 10 | 3syl | |
12 | 1 2 3 8 11 | dvmulf | |
13 | ax-resscn | |
|
14 | sseq1 | |
|
15 | 13 14 | mpbiri | |
16 | eqimss | |
|
17 | 15 16 | pm3.2i | |
18 | elpri | |
|
19 | 1 18 | syl | |
20 | pm3.44 | |
|
21 | 17 19 20 | mpsyl | |
22 | dvbsss | |
|
23 | 8 22 | eqsstrrdi | |
24 | dvcn | |
|
25 | 21 3 23 11 24 | syl31anc | |
26 | 4 25 | mulcncff | |
27 | dvcn | |
|
28 | 21 2 23 8 27 | syl31anc | |
29 | 5 28 | mulcncff | |
30 | 26 29 | addcncff | |
31 | 12 30 | eqeltrd | |