Metamath Proof Explorer


Theorem dvmulcncf

Description: A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvmulcncf.s φS
dvmulcncf.f φF:X
dvmulcncf.g φG:X
dvmulcncf.fdv φFS:Xcn
dvmulcncf.gdv φGS:Xcn
Assertion dvmulcncf φF×fGS:Xcn

Proof

Step Hyp Ref Expression
1 dvmulcncf.s φS
2 dvmulcncf.f φF:X
3 dvmulcncf.g φG:X
4 dvmulcncf.fdv φFS:Xcn
5 dvmulcncf.gdv φGS:Xcn
6 cncff FS:XcnFS:X
7 fdm FS:XdomFS=X
8 4 6 7 3syl φdomFS=X
9 cncff GS:XcnGS:X
10 fdm GS:XdomGS=X
11 5 9 10 3syl φdomGS=X
12 1 2 3 8 11 dvmulf φSDF×fG=FS×fG+fGS×fF
13 ax-resscn
14 sseq1 S=S
15 13 14 mpbiri S=S
16 eqimss S=S
17 15 16 pm3.2i S=SS=S
18 elpri SS=S=
19 1 18 syl φS=S=
20 pm3.44 S=SS=SS=S=S
21 17 19 20 mpsyl φS
22 dvbsss domFSS
23 8 22 eqsstrrdi φXS
24 dvcn SG:XXSdomGS=XG:Xcn
25 21 3 23 11 24 syl31anc φG:Xcn
26 4 25 mulcncff φFS×fG:Xcn
27 dvcn SF:XXSdomFS=XF:Xcn
28 21 2 23 8 27 syl31anc φF:Xcn
29 5 28 mulcncff φGS×fF:Xcn
30 26 29 addcncff φFS×fG+fGS×fF:Xcn
31 12 30 eqeltrd φF×fGS:Xcn