Metamath Proof Explorer


Theorem dvcosax

Description: Derivative exercise: the derivative with respect to x of cos(Ax), given a constant A . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion dvcosax AdxcosAxdx=xAsinAx

Proof

Step Hyp Ref Expression
1 mulcl AxAx
2 eqidd AxAx=xAx
3 cosf cos:
4 3 a1i Acos:
5 4 feqmptd Acos=ycosy
6 fveq2 y=Axcosy=cosAx
7 1 2 5 6 fmptco AcosxAx=xcosAx
8 7 eqcomd AxcosAx=cosxAx
9 8 oveq2d AdxcosAxdx=DcosxAx
10 cnelprrecn
11 10 a1i A
12 1 fmpttd AxAx:
13 dvcos Dcos=xsinx
14 13 dmeqi domcos=domxsinx
15 dmmptg xsinxdomxsinx=
16 sincl xsinx
17 16 negcld xsinx
18 15 17 mprg domxsinx=
19 14 18 eqtri domcos=
20 19 a1i Adomcos=
21 simpl AxA
22 0red Ax0
23 id AA
24 11 23 dvmptc AdxAdx=x0
25 simpr Axx
26 1red Ax1
27 11 dvmptid Adxxdx=x1
28 11 21 22 24 25 26 27 dvmptmul AdxAxdx=x0x+1A
29 28 dmeqd AdomdxAxdx=domx0x+1A
30 dmmptg x0x+1AVdomx0x+1A=
31 ovex 0x+1AV
32 31 a1i x0x+1AV
33 30 32 mprg domx0x+1A=
34 29 33 eqtrdi AdomdxAxdx=
35 11 11 4 12 20 34 dvcof ADcosxAx=cosxAx×fdxAxdx
36 dvcos Dcos=ysiny
37 36 a1i ADcos=ysiny
38 fveq2 y=Axsiny=sinAx
39 38 negeqd y=Axsiny=sinAx
40 1 2 37 39 fmptco AcosxAx=xsinAx
41 40 oveq1d AcosxAx×fdxAxdx=xsinAx×fdxAxdx
42 cnex V
43 42 mptex xsinAxV
44 ovex dxAxdxV
45 offval3 xsinAxVdxAxdxVxsinAx×fdxAxdx=ydomxsinAxdomdxAxdxxsinAxydxAxdxy
46 43 44 45 mp2an xsinAx×fdxAxdx=ydomxsinAxdomdxAxdxxsinAxydxAxdxy
47 46 a1i AxsinAx×fdxAxdx=ydomxsinAxdomdxAxdxxsinAxydxAxdxy
48 1 sincld AxsinAx
49 48 negcld AxsinAx
50 49 ralrimiva AxsinAx
51 dmmptg xsinAxdomxsinAx=
52 50 51 syl AdomxsinAx=
53 52 34 ineq12d AdomxsinAxdomdxAxdx=
54 inidm =
55 53 54 eqtrdi AdomxsinAxdomdxAxdx=
56 simpr AydomxsinAxdomdxAxdxydomxsinAxdomdxAxdx
57 55 adantr AydomxsinAxdomdxAxdxdomxsinAxdomdxAxdx=
58 56 57 eleqtrd AydomxsinAxdomdxAxdxy
59 eqidd yxsinAx=xsinAx
60 oveq2 x=yAx=Ay
61 60 fveq2d x=ysinAx=sinAy
62 61 negeqd x=ysinAx=sinAy
63 62 adantl yx=ysinAx=sinAy
64 id yy
65 negex sinAyV
66 65 a1i ysinAyV
67 59 63 64 66 fvmptd yxsinAxy=sinAy
68 67 adantl AyxsinAxy=sinAy
69 28 adantr AydxAxdx=x0x+1A
70 oveq2 x=y0x=0y
71 70 oveq1d x=y0x+1A=0y+1A
72 mul02 y0y=0
73 mullid A1A=A
74 72 73 oveqan12rd Ay0y+1A=0+A
75 addlid A0+A=A
76 75 adantr Ay0+A=A
77 74 76 eqtrd Ay0y+1A=A
78 71 77 sylan9eqr Ayx=y0x+1A=A
79 simpr Ayy
80 simpl AyA
81 69 78 79 80 fvmptd AydxAxdxy=A
82 68 81 oveq12d AyxsinAxydxAxdxy=sinAyA
83 mulcl AyAy
84 83 sincld AysinAy
85 84 negcld AysinAy
86 85 80 mulcomd AysinAyA=AsinAy
87 82 86 eqtrd AyxsinAxydxAxdxy=AsinAy
88 58 87 syldan AydomxsinAxdomdxAxdxxsinAxydxAxdxy=AsinAy
89 55 88 mpteq12dva AydomxsinAxdomdxAxdxxsinAxydxAxdxy=yAsinAy
90 41 47 89 3eqtrd AcosxAx×fdxAxdx=yAsinAy
91 9 35 90 3eqtrd AdxcosAxdx=yAsinAy
92 oveq2 y=xAy=Ax
93 92 fveq2d y=xsinAy=sinAx
94 93 negeqd y=xsinAy=sinAx
95 94 oveq2d y=xAsinAy=AsinAx
96 95 cbvmptv yAsinAy=xAsinAx
97 91 96 eqtrdi AdxcosAxdx=xAsinAx