| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 2 |
|
eqidd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) |
| 3 |
|
cosf |
⊢ cos : ℂ ⟶ ℂ |
| 4 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → cos : ℂ ⟶ ℂ ) |
| 5 |
4
|
feqmptd |
⊢ ( 𝐴 ∈ ℂ → cos = ( 𝑦 ∈ ℂ ↦ ( cos ‘ 𝑦 ) ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐴 · 𝑥 ) → ( cos ‘ 𝑦 ) = ( cos ‘ ( 𝐴 · 𝑥 ) ) ) |
| 7 |
1 2 5 6
|
fmptco |
⊢ ( 𝐴 ∈ ℂ → ( cos ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑥 ) ) ) ) |
| 8 |
7
|
eqcomd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑥 ) ) ) = ( cos ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) |
| 9 |
8
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑥 ) ) ) ) = ( ℂ D ( cos ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) |
| 10 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
| 11 |
10
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ℂ ∈ { ℝ , ℂ } ) |
| 12 |
1
|
fmpttd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) : ℂ ⟶ ℂ ) |
| 13 |
|
dvcos |
⊢ ( ℂ D cos ) = ( 𝑥 ∈ ℂ ↦ - ( sin ‘ 𝑥 ) ) |
| 14 |
13
|
dmeqi |
⊢ dom ( ℂ D cos ) = dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ 𝑥 ) ) |
| 15 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ ℂ - ( sin ‘ 𝑥 ) ∈ ℂ → dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ 𝑥 ) ) = ℂ ) |
| 16 |
|
sincl |
⊢ ( 𝑥 ∈ ℂ → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 17 |
16
|
negcld |
⊢ ( 𝑥 ∈ ℂ → - ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 18 |
15 17
|
mprg |
⊢ dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ 𝑥 ) ) = ℂ |
| 19 |
14 18
|
eqtri |
⊢ dom ( ℂ D cos ) = ℂ |
| 20 |
19
|
a1i |
⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D cos ) = ℂ ) |
| 21 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 22 |
|
0red |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → 0 ∈ ℝ ) |
| 23 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
| 24 |
11 23
|
dvmptc |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝐴 ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
| 25 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
| 26 |
|
1red |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℝ ) |
| 27 |
11
|
dvmptid |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
| 28 |
11 21 22 24 25 26 27
|
dvmptmul |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ) ) |
| 29 |
28
|
dmeqd |
⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) = dom ( 𝑥 ∈ ℂ ↦ ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ) ) |
| 30 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ ℂ ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ∈ V → dom ( 𝑥 ∈ ℂ ↦ ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ) = ℂ ) |
| 31 |
|
ovex |
⊢ ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ∈ V |
| 32 |
31
|
a1i |
⊢ ( 𝑥 ∈ ℂ → ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ∈ V ) |
| 33 |
30 32
|
mprg |
⊢ dom ( 𝑥 ∈ ℂ ↦ ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ) = ℂ |
| 34 |
29 33
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) = ℂ ) |
| 35 |
11 11 4 12 20 34
|
dvcof |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( cos ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ( ( ( ℂ D cos ) ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ∘f · ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) |
| 36 |
|
dvcos |
⊢ ( ℂ D cos ) = ( 𝑦 ∈ ℂ ↦ - ( sin ‘ 𝑦 ) ) |
| 37 |
36
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D cos ) = ( 𝑦 ∈ ℂ ↦ - ( sin ‘ 𝑦 ) ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐴 · 𝑥 ) → ( sin ‘ 𝑦 ) = ( sin ‘ ( 𝐴 · 𝑥 ) ) ) |
| 39 |
38
|
negeqd |
⊢ ( 𝑦 = ( 𝐴 · 𝑥 ) → - ( sin ‘ 𝑦 ) = - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) |
| 40 |
1 2 37 39
|
fmptco |
⊢ ( 𝐴 ∈ ℂ → ( ( ℂ D cos ) ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ) |
| 41 |
40
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℂ D cos ) ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ∘f · ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∘f · ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) |
| 42 |
|
cnex |
⊢ ℂ ∈ V |
| 43 |
42
|
mptex |
⊢ ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∈ V |
| 44 |
|
ovex |
⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ∈ V |
| 45 |
|
offval3 |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∈ V ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ∈ V ) → ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∘f · ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ↦ ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) · ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) ) ) ) |
| 46 |
43 44 45
|
mp2an |
⊢ ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∘f · ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ↦ ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) · ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) ) ) |
| 47 |
46
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∘f · ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ↦ ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) · ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) ) ) ) |
| 48 |
1
|
sincld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( sin ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 49 |
48
|
negcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → - ( sin ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 50 |
49
|
ralrimiva |
⊢ ( 𝐴 ∈ ℂ → ∀ 𝑥 ∈ ℂ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 51 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ ℂ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ → dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) = ℂ ) |
| 52 |
50 51
|
syl |
⊢ ( 𝐴 ∈ ℂ → dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) = ℂ ) |
| 53 |
52 34
|
ineq12d |
⊢ ( 𝐴 ∈ ℂ → ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ( ℂ ∩ ℂ ) ) |
| 54 |
|
inidm |
⊢ ( ℂ ∩ ℂ ) = ℂ |
| 55 |
53 54
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ℂ ) |
| 56 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) → 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) |
| 57 |
55
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) → ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ℂ ) |
| 58 |
56 57
|
eleqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) → 𝑦 ∈ ℂ ) |
| 59 |
|
eqidd |
⊢ ( 𝑦 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ) |
| 60 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑦 ) ) |
| 61 |
60
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( sin ‘ ( 𝐴 · 𝑥 ) ) = ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 62 |
61
|
negeqd |
⊢ ( 𝑥 = 𝑦 → - ( sin ‘ ( 𝐴 · 𝑥 ) ) = - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 63 |
62
|
adantl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 = 𝑦 ) → - ( sin ‘ ( 𝐴 · 𝑥 ) ) = - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 64 |
|
id |
⊢ ( 𝑦 ∈ ℂ → 𝑦 ∈ ℂ ) |
| 65 |
|
negex |
⊢ - ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ V |
| 66 |
65
|
a1i |
⊢ ( 𝑦 ∈ ℂ → - ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ V ) |
| 67 |
59 63 64 66
|
fvmptd |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) = - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 68 |
67
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) = - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 69 |
28
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ) ) |
| 70 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 0 · 𝑥 ) = ( 0 · 𝑦 ) ) |
| 71 |
70
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) = ( ( 0 · 𝑦 ) + ( 1 · 𝐴 ) ) ) |
| 72 |
|
mul02 |
⊢ ( 𝑦 ∈ ℂ → ( 0 · 𝑦 ) = 0 ) |
| 73 |
|
mullid |
⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |
| 74 |
72 73
|
oveqan12rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 0 · 𝑦 ) + ( 1 · 𝐴 ) ) = ( 0 + 𝐴 ) ) |
| 75 |
|
addlid |
⊢ ( 𝐴 ∈ ℂ → ( 0 + 𝐴 ) = 𝐴 ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 0 + 𝐴 ) = 𝐴 ) |
| 77 |
74 76
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 0 · 𝑦 ) + ( 1 · 𝐴 ) ) = 𝐴 ) |
| 78 |
71 77
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑥 = 𝑦 ) → ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) = 𝐴 ) |
| 79 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
| 80 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 81 |
69 78 79 80
|
fvmptd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) = 𝐴 ) |
| 82 |
68 81
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) · ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) ) = ( - ( sin ‘ ( 𝐴 · 𝑦 ) ) · 𝐴 ) ) |
| 83 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) |
| 84 |
83
|
sincld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 85 |
84
|
negcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → - ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 86 |
85 80
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( - ( sin ‘ ( 𝐴 · 𝑦 ) ) · 𝐴 ) = ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 87 |
82 86
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) · ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) ) = ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 88 |
58 87
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) → ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) · ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) ) = ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 89 |
55 88
|
mpteq12dva |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ↦ ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) · ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 90 |
41 47 89
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℂ D cos ) ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ∘f · ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 91 |
9 35 90
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 92 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝑥 ) ) |
| 93 |
92
|
fveq2d |
⊢ ( 𝑦 = 𝑥 → ( sin ‘ ( 𝐴 · 𝑦 ) ) = ( sin ‘ ( 𝐴 · 𝑥 ) ) ) |
| 94 |
93
|
negeqd |
⊢ ( 𝑦 = 𝑥 → - ( sin ‘ ( 𝐴 · 𝑦 ) ) = - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) |
| 95 |
94
|
oveq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) = ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ) |
| 96 |
95
|
cbvmptv |
⊢ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ) |
| 97 |
91 96
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ) ) |