Metamath Proof Explorer


Theorem dvnfval

Description: Value of the iterated derivative. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypothesis dvnfval.1 G=xVSDx
Assertion dvnfval SF𝑝𝑚SSDnF=seq0G1st0×F

Proof

Step Hyp Ref Expression
1 dvnfval.1 G=xVSDx
2 df-dvn Dn=s𝒫,f𝑝𝑚sseq0xVsDx1st0×f
3 2 a1i SF𝑝𝑚SDn=s𝒫,f𝑝𝑚sseq0xVsDx1st0×f
4 simprl SF𝑝𝑚Ss=Sf=Fs=S
5 4 oveq1d SF𝑝𝑚Ss=Sf=FsDx=SDx
6 5 mpteq2dv SF𝑝𝑚Ss=Sf=FxVsDx=xVSDx
7 6 1 eqtr4di SF𝑝𝑚Ss=Sf=FxVsDx=G
8 7 coeq1d SF𝑝𝑚Ss=Sf=FxVsDx1st=G1st
9 8 seqeq2d SF𝑝𝑚Ss=Sf=Fseq0xVsDx1st0×f=seq0G1st0×f
10 simprr SF𝑝𝑚Ss=Sf=Ff=F
11 10 sneqd SF𝑝𝑚Ss=Sf=Ff=F
12 11 xpeq2d SF𝑝𝑚Ss=Sf=F0×f=0×F
13 12 seqeq3d SF𝑝𝑚Ss=Sf=Fseq0G1st0×f=seq0G1st0×F
14 9 13 eqtrd SF𝑝𝑚Ss=Sf=Fseq0xVsDx1st0×f=seq0G1st0×F
15 simpr SF𝑝𝑚Ss=Ss=S
16 15 oveq2d SF𝑝𝑚Ss=S𝑝𝑚s=𝑝𝑚S
17 simpl SF𝑝𝑚SS
18 cnex V
19 18 elpw2 S𝒫S
20 17 19 sylibr SF𝑝𝑚SS𝒫
21 simpr SF𝑝𝑚SF𝑝𝑚S
22 seqex seq0G1st0×FV
23 22 a1i SF𝑝𝑚Sseq0G1st0×FV
24 3 14 16 20 21 23 ovmpodx SF𝑝𝑚SSDnF=seq0G1st0×F