Metamath Proof Explorer


Theorem dvsef

Description: Derivative of the exponential function on the real or complex numbers. (Contributed by Steve Rodriguez, 12-Nov-2015)

Ref Expression
Assertion dvsef SSDexpS=expS

Proof

Step Hyp Ref Expression
1 eff exp:
2 1 jctr SSexp:
3 recnprss SS
4 dvef Dexp=exp
5 4 dmeqi domexp=domexp
6 1 fdmi domexp=
7 5 6 eqtri domexp=
8 3 7 sseqtrrdi SSdomexp
9 ssid
10 8 9 jctil SSdomexp
11 dvres3 Sexp:SdomexpSDexpS=expS
12 2 10 11 syl2anc SSDexpS=expS
13 4 reseq1i expS=expS
14 12 13 eqtrdi SSDexpS=expS