Metamath Proof Explorer


Theorem dvsef

Description: Derivative of the exponential function on the real or complex numbers. (Contributed by Steve Rodriguez, 12-Nov-2015)

Ref Expression
Assertion dvsef S S D exp S = exp S

Proof

Step Hyp Ref Expression
1 eff exp :
2 1 jctr S S exp :
3 recnprss S S
4 dvef D exp = exp
5 4 dmeqi dom exp = dom exp
6 1 fdmi dom exp =
7 5 6 eqtri dom exp =
8 3 7 sseqtrrdi S S dom exp
9 ssid
10 8 9 jctil S S dom exp
11 dvres3 S exp : S dom exp S D exp S = exp S
12 2 10 11 syl2anc S S D exp S = exp S
13 4 reseq1i exp S = exp S
14 12 13 eqtrdi S S D exp S = exp S