Description: Derivative of the identity function on the real or complex numbers. (Contributed by Steve Rodriguez, 11-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dvsid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi | |
|
2 | rnresi | |
|
3 | 2 | eqimssi | |
4 | df-f | |
|
5 | 1 3 4 | mpbir2an | |
6 | 5 | jctr | |
7 | recnprss | |
|
8 | dvid | |
|
9 | 8 | dmeqi | |
10 | 1ex | |
|
11 | 10 | fconst | |
12 | 11 | fdmi | |
13 | 9 12 | eqtri | |
14 | 7 13 | sseqtrrdi | |
15 | ssid | |
|
16 | 14 15 | jctil | |
17 | dvres3 | |
|
18 | 6 16 17 | syl2anc | |
19 | 7 | resabs1d | |
20 | 19 | oveq2d | |
21 | 8 | reseq1i | |
22 | xpssres | |
|
23 | 21 22 | eqtrid | |
24 | 7 23 | syl | |
25 | 18 20 24 | 3eqtr3d | |