Metamath Proof Explorer


Theorem ebtwntg

Description: The betweenness relation used in the Tarski structure for the Euclidean geometry is the same as Btwn . (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses ebtwntg.1 φN
ebtwntg.2 P=Base𝔼𝒢N
ebtwntg.3 I=Itv𝔼𝒢N
ebtwntg.x φXP
ebtwntg.y φYP
ebtwntg.z φZP
Assertion ebtwntg φZBtwnXYZXIY

Proof

Step Hyp Ref Expression
1 ebtwntg.1 φN
2 ebtwntg.2 P=Base𝔼𝒢N
3 ebtwntg.3 I=Itv𝔼𝒢N
4 ebtwntg.x φXP
5 ebtwntg.y φYP
6 ebtwntg.z φZP
7 itvid Itv=SlotItvndx
8 fvexd φ𝔼𝒢NV
9 eengstr N𝔼𝒢NStruct117
10 1 9 syl φ𝔼𝒢NStruct117
11 structn0fun 𝔼𝒢NStruct117Fun𝔼𝒢N
12 10 11 syl φFun𝔼𝒢N
13 structcnvcnv 𝔼𝒢NStruct117𝔼𝒢N-1-1=𝔼𝒢N
14 10 13 syl φ𝔼𝒢N-1-1=𝔼𝒢N
15 14 funeqd φFun𝔼𝒢N-1-1Fun𝔼𝒢N
16 12 15 mpbird φFun𝔼𝒢N-1-1
17 opex Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyV
18 17 prid1 Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyItvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
19 elun2 Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyItvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxzItvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyBasendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
20 18 19 ax-mp Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyBasendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
21 eengv N𝔼𝒢N=Basendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
22 1 21 syl φ𝔼𝒢N=Basendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
23 20 22 eleqtrrid φItvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxy𝔼𝒢N
24 fvex 𝔼NV
25 24 24 mpoex x𝔼N,y𝔼Nz𝔼N|zBtwnxyV
26 25 a1i φx𝔼N,y𝔼Nz𝔼N|zBtwnxyV
27 7 8 16 23 26 strfv2d φx𝔼N,y𝔼Nz𝔼N|zBtwnxy=Itv𝔼𝒢N
28 3 27 eqtr4id φI=x𝔼N,y𝔼Nz𝔼N|zBtwnxy
29 simprl φx=Xy=Yx=X
30 simprr φx=Xy=Yy=Y
31 29 30 opeq12d φx=Xy=Yxy=XY
32 31 breq2d φx=Xy=YzBtwnxyzBtwnXY
33 32 rabbidv φx=Xy=Yz𝔼N|zBtwnxy=z𝔼N|zBtwnXY
34 4 2 eleqtrdi φXBase𝔼𝒢N
35 eengbas N𝔼N=Base𝔼𝒢N
36 1 35 syl φ𝔼N=Base𝔼𝒢N
37 34 36 eleqtrrd φX𝔼N
38 5 2 eleqtrdi φYBase𝔼𝒢N
39 38 36 eleqtrrd φY𝔼N
40 24 rabex z𝔼N|zBtwnXYV
41 40 a1i φz𝔼N|zBtwnXYV
42 28 33 37 39 41 ovmpod φXIY=z𝔼N|zBtwnXY
43 42 eleq2d φZXIYZz𝔼N|zBtwnXY
44 6 2 eleqtrdi φZBase𝔼𝒢N
45 44 36 eleqtrrd φZ𝔼N
46 breq1 z=ZzBtwnXYZBtwnXY
47 46 elrab3 Z𝔼NZz𝔼N|zBtwnXYZBtwnXY
48 45 47 syl φZz𝔼N|zBtwnXYZBtwnXY
49 43 48 bitr2d φZBtwnXYZXIY