Metamath Proof Explorer


Theorem eclclwwlkn1

Description: An equivalence class according to .~ . (Contributed by Alexander van der Vekens, 12-Apr-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Hypotheses erclwwlkn.w W=NClWWalksNG
erclwwlkn.r ˙=tu|tWuWn0Nt=ucyclShiftn
Assertion eclclwwlkn1 BXBW/˙xWB=yW|n0Ny=xcyclShiftn

Proof

Step Hyp Ref Expression
1 erclwwlkn.w W=NClWWalksNG
2 erclwwlkn.r ˙=tu|tWuWn0Nt=ucyclShiftn
3 elqsecl BXBW/˙xWB=y|x˙y
4 1 2 erclwwlknsym x˙yy˙x
5 1 2 erclwwlknsym y˙xx˙y
6 4 5 impbii x˙yy˙x
7 6 a1i BXxWx˙yy˙x
8 7 abbidv BXxWy|x˙y=y|y˙x
9 1 2 erclwwlkneq yVxVy˙xyWxWn0Ny=xcyclShiftn
10 9 el2v y˙xyWxWn0Ny=xcyclShiftn
11 10 a1i BXxWy˙xyWxWn0Ny=xcyclShiftn
12 11 abbidv BXxWy|y˙x=y|yWxWn0Ny=xcyclShiftn
13 3anan12 yWxWn0Ny=xcyclShiftnxWyWn0Ny=xcyclShiftn
14 ibar xWyWn0Ny=xcyclShiftnxWyWn0Ny=xcyclShiftn
15 14 bicomd xWxWyWn0Ny=xcyclShiftnyWn0Ny=xcyclShiftn
16 15 adantl BXxWxWyWn0Ny=xcyclShiftnyWn0Ny=xcyclShiftn
17 13 16 bitrid BXxWyWxWn0Ny=xcyclShiftnyWn0Ny=xcyclShiftn
18 17 abbidv BXxWy|yWxWn0Ny=xcyclShiftn=y|yWn0Ny=xcyclShiftn
19 df-rab yW|n0Ny=xcyclShiftn=y|yWn0Ny=xcyclShiftn
20 18 19 eqtr4di BXxWy|yWxWn0Ny=xcyclShiftn=yW|n0Ny=xcyclShiftn
21 8 12 20 3eqtrd BXxWy|x˙y=yW|n0Ny=xcyclShiftn
22 21 eqeq2d BXxWB=y|x˙yB=yW|n0Ny=xcyclShiftn
23 22 rexbidva BXxWB=y|x˙yxWB=yW|n0Ny=xcyclShiftn
24 3 23 bitrd BXBW/˙xWB=yW|n0Ny=xcyclShiftn